Results 121 to 130 of about 37,969 (302)

Quadriplegia.? Progressive Muscular Atrophy [PDF]

open access: yesProceedings of the Royal Society of Medicine, 1926
Redvers N. Ironside, T. Grainger Stewart
openaire   +1 more source

Cytokine profiles in multifocal motor neuropathy and progressive muscular atrophy [PDF]

open access: bronze, 2015
Lotte Vlam   +5 more
openalex   +1 more source

Microgel‐Based Hierarchical Porous Hydrogel Patch with Adhesion and Resilience for Myocardial Infarction

open access: yesAdvanced Science, EarlyView.
This study develops a hierarchically porous hydrogel patch strategy (HPMP), based on gas‐shearing microfluidics and an aqueous two‐phase system to fabricate porous microgels as microgel‐based bioinks. The porous microgels with controllable porous structure exhibit excellent cellular behavior.
Ziyang Liu   +13 more
wiley   +1 more source

PROGRESSIVE MUSCULAR ATROPHY [PDF]

open access: yesThe Journal of Nervous and Mental Disease, 1920
openaire   +1 more source

A Wearable System Featuring Biomimetic Spatially Distributed Iontronic Sensing Array for Dynamic Monitoring of Deep Tissue Modulus

open access: yesAdvanced Science, EarlyView.
A fully wearable system enables real‐time, dynamic, and accurate monitoring of Young's modulus in multilayer tissues containing deep muscle. It demonstrates high accuracy and robustness across simulations, benchtop validations, and human testing. It quantifies edema severity and tracks muscle stiffness during rest, loaded elbow flexion, rope skipping ...
Zhenning Wang   +12 more
wiley   +1 more source

Artificial Intelligence‐Driven Soft Bioelectronics for Self‐Powered Respiration Monitoring

open access: yesAdvanced Science, EarlyView.
Artificial intelligence‐driven soft bioelectronics for self powered respiration monitoring based on triboelectric nanogenerators (TENGs), piezoelectric nanogenerators (PENGs), and magnetoelastic generators (MEGs) enable continuous and multi‐scenario respiratory biomechanical data collection. Coupled with machine learning and big data driven diagnostics,
Xinkai Xu, Xiao Xiao, Rui Guo, Jun Chen
wiley   +1 more source

Multimodal AI‐Driven Identification of Dehydrocostus Lactone as a Potent Renal Fibrosis Attenuator Targeting IQGAP1

open access: yesAdvanced Science, EarlyView.
Renal fibrosis, a hallmark of CKD, lacks effective treatments. Herein, we developed a multimodal AI model (TCM‐SPred) to identify anti‐fibrotic agents and found that dehydrocostus lactone (DCL) targets IQGAP1 to inhibit Wnt signaling, blocking the interaction between IQGAP1 and CCT3, demonstrating potent anti‐fibrotic activity in vitro and in vivo ...
Weijiang Lin   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy