Results 221 to 230 of about 625,964 (267)

Universal Neuromorphic Element: NbOx Memristor with Co‐Existing Volatile, Non‐Volatile, and Threshold Switching

open access: yesAdvanced Functional Materials, EarlyView.
A W/NbOx/Pt memristor demonstrates the coexistence of volatile, non‐volatile, and threshold switching characteristics. Volatile switching serves as a reservoir computing layer, providing dynamic short‐term processing. Non‐volatile switching, stabilized through ISPVA, improves reliable long‐term readout. Threshold switching operates as a leaky integrate
Ungbin Byun, Hyesung Na, Sungjun Kim
wiley   +1 more source

A Van der Waals Optoelectronic Synapse with Tunable Positive and Negative Post‐Synaptic Current for Highly Accurate Spiking Neural Networks

open access: yesAdvanced Functional Materials, EarlyView.
A van der Waals optoelectronic synaptic device based on a ReS2/WSe2 heterostructure and oxygen‐treated h‐BN is presented, which enables both positive and negative PSCs through photocarrier polarity reversal. Bidirectional plasticity arises from gate‐tunable band bending and charge trapping‐induced quasi‐doping.
Hyejin Yoon   +9 more
wiley   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Digital Discovery of Synthesizable Metal−Organic Frameworks via Molecular Dynamics‑Informed, High‑Fidelity Deep Learning

open access: yesAdvanced Functional Materials, EarlyView.
Tabular foundation model interrogates the synthetic likelihood of metal−organic frameworks. Abstract Metal–organic frameworks (MOFs) are celebrated for their chemical and structural versatility, and in‑silico screening has significantly accelerated their discovery; yet most hypothetical MOFs (hMOFs) never reach the bench because their synthetic ...
Xiaoyu Wu   +3 more
wiley   +1 more source

Integrative Approaches for DNA Sequence‐Controlled Functional Materials

open access: yesAdvanced Functional Materials, EarlyView.
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo   +4 more
wiley   +1 more source

Smarter Sensors Through Machine Learning: Historical Insights and Emerging Trends across Sensor Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights how machine learning (ML) algorithms are employed to enhance sensor performance, focusing on gas and physical sensors such as haptic and strain devices. By addressing current bottlenecks and enabling simultaneous improvement of multiple metrics, these approaches pave the way toward next‐generation, real‐world sensor applications.
Kichul Lee   +17 more
wiley   +1 more source

Electron–Matter Interactions During Electron Beam Nanopatterning

open access: yesAdvanced Functional Materials, EarlyView.
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima   +2 more
wiley   +1 more source

In Materia Shaping of Randomness with a Standard Complementary Metal‐Oxide‐Semiconductor Transistor for Task‐Adaptive Entropy Generation

open access: yesAdvanced Functional Materials, EarlyView.
This study establishes a materials‐driven framework for entropy generation within standard CMOS technology. By electrically rebalancing gate‐oxide traps and Si‐channel defects in foundry‐fabricated FDSOI transistors, the work realizes in‐materia control of temporal correlation – achieving task adaptive entropy optimization for reinforcement learning ...
Been Kwak   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy