Results 131 to 140 of about 3,089,193 (316)

Dammarenediol II enhances etoposide‐induced apoptosis by targeting O‐GlcNAc transferase and Akt/GSK3β/mTOR signaling in liver cancer

open access: yesMolecular Oncology, EarlyView.
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee   +8 more
wiley   +1 more source

Project Office Volume 1

open access: yes, 2014
Project Office is a design and research collaboration of staff and students based within the Leeds School of Architecture at Leeds Beckett University. It is an architecture consultancy concerned with ethical, social and resilient architecture and design. We work with like-minded communities, organisations and individuals.
Stott, CR, Warren, SP
openaire  

Basroparib inhibits YAP‐driven cancers by stabilizing angiomotin

open access: yesMolecular Oncology, EarlyView.
Basroparib, a selective tankyrase inhibitor, suppresses Wnt signaling and attenuates YAP‐driven oncogenic programs by stabilizing angiomotin. It promotes AMOT–YAP complex formation, enforces cytoplasmic YAP sequestration, inhibits YAP/TEAD transcription, and sensitizes YAP‐active cancers, including KRAS‐mutant colorectal cancer, to MEK inhibition.
Young‐Ju Kwon   +4 more
wiley   +1 more source

RaMBat: Accurate identification of medulloblastoma subtypes from diverse data sources with severe batch effects

open access: yesMolecular Oncology, EarlyView.
To integrate multiple transcriptomics data with severe batch effects for identifying MB subtypes, we developed a novel and accurate computational method named RaMBat, which leveraged subtype‐specific gene expression ranking information instead of absolute gene expression levels to address batch effects of diverse data sources.
Mengtao Sun, Jieqiong Wang, Shibiao Wan
wiley   +1 more source

Genetic attenuation of ALDH1A1 increases metastatic potential and aggressiveness in colorectal cancer

open access: yesMolecular Oncology, EarlyView.
Aldehyde dehydrogenase 1A1 (ALDH1A1) is a cancer stem cell marker in several malignancies. We established a novel epithelial cell line from rectal adenocarcinoma with unique overexpression of this enzyme. Genetic attenuation of ALDH1A1 led to increased invasive capacity and metastatic potential, the inhibition of proliferation activity, and ultimately ...
Martina Poturnajova   +25 more
wiley   +1 more source

Targeted modulation of IGFL2‐AS1 reveals its translational potential in cervical adenocarcinoma

open access: yesMolecular Oncology, EarlyView.
Cervical adenocarcinoma patients face worse outcomes than squamous cell carcinoma counterparts despite similar treatment. The identification of IGFL2‐AS1's differential expression provides a molecular basis for distinguishing these histotypes, paving the way for personalized therapies and improved survival in vulnerable populations globally.
Ricardo Cesar Cintra   +6 more
wiley   +1 more source

Project Management Office

open access: yes
Physical set-up of the Project Management office in Lisbon, with branches at each partner. The office will coordinate all administrative support for the project, plus communications and financial ...
openaire   +1 more source

RIPK4 function interferes with melanoma cell adhesion and metastasis

open access: yesMolecular Oncology, EarlyView.
RIPK4 promotes melanoma growth and spread. RIPK4 levels increase as skin lesions progress to melanoma. CRISPR/Cas9‐mediated deletion of RIPK4 causes melanoma cells to form less compact spheroids, reduces their migratory and invasive abilities and limits tumour growth and dissemination in mouse models.
Norbert Wronski   +9 more
wiley   +1 more source

COMP–PMEPA1 axis promotes epithelial‐to‐mesenchymal transition in breast cancer cells

open access: yesMolecular Oncology, EarlyView.
This study reveals that cartilage oligomeric matrix protein (COMP) promotes epithelial‐to‐mesenchymal transition (EMT) in breast cancer. We identify PMEPA1 (protein TMEPAI) as a novel COMP‐binding partner that mediates EMT via binding to the TSP domains of COMP, establishing the COMP–PMEPA1 axis as a key EMT driver in breast cancer.
Konstantinos S. Papadakos   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy