Results 191 to 200 of about 191,825 (368)

Versatile Green Transfer of Magnetoelectronics with Loss‐Free Performance and High Adhesion for Interactive Electronics

open access: yesAdvanced Functional Materials, EarlyView.
An environmentally friendly transfer printing method of nm‐thick giant magnetoresistive (GMR) sensors is demonstrated. This method, relying on water and biocompatible polyvinyl alcohol (PVA) polymer without the need of complex treatments, allows transferring thin films to a wide range of biological, organic, and inorganic substrates.
Olha Bezsmertna   +7 more
wiley   +1 more source

Phase Engineering of a 1D van der Waals Thin Film

open access: yesAdvanced Functional Materials, EarlyView.
Explores the transformative potential of 1D van der Waals materials, focusing on the monoclinic‐to‐tetragonal phase transition in NbTe4, its atomic‐scale mechanisms, and significant metal‐insulator transition (MIT) behavior. Highlights advanced imaging insights and the applications of reversible phase transitions in memory devices, sensors, and ...
Yi Shuang, Daisuke Ando, Yuji Sutou
wiley   +1 more source

Rotating Liquid Marble Microreactors for Enhanced Enzymatic Reactions

open access: yesAdvanced Functional Materials, EarlyView.
Dynamic magnetic liquid marbles (LMs), stabilized by hydrophobic magnetic proteinaceous colloidosomes, function as effective microreactors for enzymatic processes. Precise magnetic manipulation allows for the rotation of these LMs, enhancing the efficiency of the enzymatic cascade reaction both at the air/water interface and within biphasic enzyme ...
Weijie Jiang   +5 more
wiley   +1 more source

Soft Pneumatic Device Designed to Mimic the Periosteal Environment for Regulating the Fate of Mesenchymal Stem Cells

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents a custom‐made soft pneumatic device (SPD) that mimics complex mechanical forces and fluid flow to enhance in vitro cell differentiation. It shows that low mechanotransduction promotes MSC differentiation into osteoprogenitor cells, while high mechanotransduction causes structural disruptions and cell detachment, providing new ...
Gwang‐Bum Im   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy