Results 21 to 30 of about 14,015 (245)
Predicting extreme defects in additive manufacturing remains a key challenge limiting its structural reliability. This study proposes a statistical framework that integrates Extreme Value Theory with advanced process indicators to explore defect–process relationships and improve the estimation of critical defect sizes. The approach provides a basis for
Muhammad Muteeb Butt +8 more
wiley +1 more source
Market Equilibrium and the Cost of Capital with Heterogeneous Investment Horizons
Expected returns, variances, betas, and alphas are all non-linear functions of the investment horizon. This seems to be a fatal conceptual problem for the capital asset pricing model (CAPM), which assumes a unique common horizon for all investors.
Moshe Levy, Haim Levy
doaj +1 more source
Investor preferences for oil spot and futures based on mean-variance and stochastic dominance [PDF]
This paper examines investor preferences for oil spot and futures based on mean-variance (MV) and stochastic dominance (SD). The mean-variance criterion cannot distinct the preferences of spot and market whereas SD tests leads to the conclusion that spot
Lean, H.H., McAleer, M.J., Wong, W-K.
core +7 more sources
Iron‐based metallic glass alloys exhibit excellent soft‐magnetic properties, and unprecedented geometrical freedom in the design of soft‐magnetic metallic glass components is made possible by additive manufacturing. An efficient workflow for developing parameters for laser‐based powder bed fusion of a Fe‐based metallic glass alloy is presented along ...
Julia Löfstrand +7 more
wiley +1 more source
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart +3 more
wiley +1 more source
The work demonstrates that strategic wall‐thickness grading in diamond triply periodic minimal surface lattices enables precise tuning of deformation and failure behavior under compression. Different gradation patterns guide how and where the structure collapses, improving energy absorption or promoting controlled brittle failure.
Giovanni Rizza +3 more
wiley +1 more source
An all‐in‐one analog AI accelerator is presented, enabling on‐chip training, weight retention, and long‐term inference acceleration. It leverages a BEOL‐integrated CMO/HfOx ReRAM array with low‐voltage operation (<1.5 V), multi‐bit capability over 32 states, low programming noise (10 nS), and near‐ideal weight transfer.
Donato Francesco Falcone +11 more
wiley +1 more source
Light‐Controlled Reversible Coassembly of Hybrid Functional Nanostructures
Light‐responsive hybrid nanostructures are formed by coassembling azobenzene‐ and PAH‐functionalized nanoparticles through reversible an tunable π interactions. The system enables tunable coupling between distinct components such as gold and magnetite or carbon nanotubes, producing switchable optical and magnetic properties under light and magnetic ...
Michal Sawczyk +5 more
wiley +1 more source
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp +7 more
wiley +1 more source
Controlled laser‐drilling of embedded HfO2 membranes creates three layer nanopores with Gaussian‐shaped cavities sculptured in the supporting layers. These embedded solid‐state nanopores slow DNA translocation by 12‐fold compared to SiNx pores, enabling high‐resolution, label‐free detection of short DNAs, RNAs, and proteins.
Jostine Joby +4 more
wiley +1 more source

