Results 111 to 120 of about 71,345 (274)

Highly Sensitive Electrochemical Biosensor Based on Hairy Particles with Controllable High Enzyme Loading and Activity

open access: yesAdvanced Functional Materials, EarlyView.
For the first time, a highly sensitive electrochemical biosensor based on SiO2‐based hairy particles with a grafted PDMAEMA polymer brush containing a quantifiable and large amount of immobilized Laccase is reported. The fabricated biosensor exhibits a sensitivity of 0.14 A·m⁻¹, a limit of detection (LOD) of 0.1 µm, and a detection range of 0.3–750 µm,
Pavel Milkin   +7 more
wiley   +1 more source

Photocatalytic Versus Stoichiometric Hydrogen Generation Using Mesoporous Silicon Catalysts: The Complex Role of Sacrificial Reagents

open access: yesAdvanced Functional Materials, EarlyView.
This study highlights the importance of accounting for stoichiometric hydrogen produced when utilizing Si photocatalysts. The stoichiometric contribution is sacrificial reagent dependent and decreases with increasing sterics around the catalyst surface.
Sarrah H. Putwa   +4 more
wiley   +1 more source

Facile construction of polyoxometalate-modified polyaryletherketone-based hybrid membranes with enhanced proton conductivity

open access: yesPolyoxometalates
The development of novel proton exchange membranes (PEMs) with high proton conductivity and good mechanical performance as alternatives to Nafion is crucial.
Bo Hu   +9 more
doaj   +1 more source

Exploiting the Functionality of Cerium Oxide‐Modified Carbon Nanohorns Catalysts Toward Enhanced CO2 Reduction Performance

open access: yesAdvanced Functional Materials, EarlyView.
A cerium oxide‐carbon nanohybrid catalyst is synthesized via two distinct routes and is integrated into H‐type cells and gas diffusion layers (GDLs) to enhance electrochemical performance. Structural variations significantly affect performance, with the solvothermal sample exhibiting higher current densities.
Alessia Pollice   +9 more
wiley   +1 more source

Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field

open access: yesAdvanced Functional Materials, EarlyView.
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi   +7 more
wiley   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Cryo‐EM of Rationally Designed Photosystem I Nanoassembly on Graphene Validates Orientation‐Driven Enhancement of Photocatalytic Performance

open access: yesAdvanced Functional Materials, EarlyView.
The first cryo‐EM visualization and quantification of oriented Photosystem I (PSI) on single‐layer graphene is reported. Domain‐specific covalent anchoring of PSI, with the reducing side of the biophotocatalyst toward graphene, promotes three‐fold higher anodic photocurrent generation compared to a randomly physisorbed counterpart. This approach allows
Miriam Izzo   +6 more
wiley   +1 more source

New triazinephosphonate dopants for Nafion proton exchange membranes (PEM)

open access: yesBeilstein Journal of Organic Chemistry
A new paradigm for energy is underway demanding decarbonized energy systems. Some of them rely on emerging electrochemical devices, crucial in hydrogen technologies, including fuel cells, CO2 and water electrolysers, whose applications and performances ...
Fátima C. Teixeira   +2 more
doaj   +1 more source

Continuous‐Flow Photocatalytic Degradation of Glyphosate and Aminomethylphosphonic Acid Under Simulated Sunlight with TiO2‐Coated Poly(vinylidene fluoride) Membrane

open access: yesAdvanced Functional Materials, EarlyView.
Glyphosate (GLY) and its primary metabolite, aminomethylphosphonic acid (AMPA), are photodegraded using a poly(vinylidene fluoride) membrane with immobilized titanium dioxide (PVDF‐TiO2) in a continuous flow‐through operation under solar light. At optimized conditions, the PVDF‐TiO2 membrane achieved 95% GLY and 80% AMPA removal with •O2− as the ...
Phuong B. Trinh   +4 more
wiley   +1 more source

Electroactive Metal–Organic Frameworks for Electrocatalysis

open access: yesAdvanced Functional Materials, EarlyView.
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy