Results 41 to 50 of about 249,684 (338)
In a cyclotron-based proton therapy facility, the energy changes are performed by means of a degrader of variable thickness. The interaction of the proton beam with the degrader creates energy tails and increases the beam emittance.
Adelmann, A.+5 more
core +1 more source
Nuclear Emulsion Film Detectors for Proton Radiography: Design and Test of the First Prototype
Proton therapy is nowadays becoming a wide spread clinical practice in cancer therapy and sophisticated treatment planning systems are routinely used to exploit at best the ballistic properties of charged particles.
Braccini, Saverio+7 more
core +1 more source
Towards 3D printed multifunctional immobilization for proton therapy: initial materials characterization [PDF]
Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-speci c structure.
Ahn+44 more
core +2 more sources
Background The purpose of this study is to assess the feasibility of mixed-reality (MixR) visualization for patient setup in breast and chest wall radiotherapy (RT) by performing a first-in-human clinical trial comparing MixR with a 3-point alignment ...
Perry B. Johnson+8 more
doaj +1 more source
Exposure to common noxious agents (1), including allergens, pollutants, and micro‐nanoplastics, can cause epithelial barrier damage (2) in our body's protective linings. This may trigger an immune response to our microbiome (3). The epithelial barrier theory explains how this process can lead to chronic noncommunicable diseases (4) affecting organs ...
Can Zeyneloglu+17 more
wiley +1 more source
Radiation Therapy Medical Physics Review – Delivery, Interactions, Safety, Feasibility, and Head to Head Comparisons of the Leading Radiation Therapy Techniques [PDF]
Radiation therapy uses high energy radiation to kill cancer cells. Radiation therapy for cancer treatment can take the form of photon therapy (using x-rays and gamma rays), or charged particle therapy including proton therapy and electron therapy. Within
Collins, Cielle
core +1 more source
Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver [PDF]
Proton relative biological effectiveness (RBE) is known to depend on the (alpha/beta)(x) of irradiated tissues, with evidence of similar to 60% variation over (alpha/beta)(x) values from 1-10 Gy.
Carabe, Alejandro+3 more
core +1 more source
From omics to AI—mapping the pathogenic pathways in type 2 diabetes
Integrating multi‐omics data with AI‐based modelling (unsupervised and supervised machine learning) identify optimal patient clusters, informing AI‐driven accurate risk stratification. Digital twins simulate individual trajectories in real time, guiding precision medicine by matching patients to targeted therapies.
Siobhán O'Sullivan+2 more
wiley +1 more source
Proton therapy is increasing in utilization worldwide at a rapid rate. With process improvements in costs, footprints, and continued advances in the delivery of care, including intensity modulation and image guidance, proton therapy may evolve into standard treatment with photon radiation therapy.
Allison Sacher+22 more
openaire +4 more sources
Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence
The individual functions of three isoforms exchanging ADP and ATP (ADP/ATP translocases; ANTs) on the mitochondrial membrane remain unclear. We developed a method for quantitatively differentiating highly similar human ANT1, ANT2, and ANT3 using parallel reaction monitoring. This method allowed us to assess changes in translocase levels during cellular
Zuzana Liblova+18 more
wiley +1 more source