Results 191 to 200 of about 2,813,006 (349)

Atomic‐Level Dual‐Cation Engineering Enables High‐Performance Na4VMn(PO4)3 Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun   +8 more
wiley   +1 more source

Reactive hyperemia and baseline pulse amplitude among smelter workers exposed to fine and ultrafine particles. [PDF]

open access: yesInt Arch Occup Environ Health, 2020
Bugge MD   +5 more
europepmc   +1 more source

Does a Morphotropic Phase Boundary Exist in ZrxHf1‐xO2‐Based Thin Films?

open access: yesAdvanced Functional Materials, EarlyView.
This study investigates 6 nm zirconium‐rich hafnium‐zirconium oxide thin–film metal–insulator–metal capacitors using a combination of experimental methods and machine learning–based molecular dynamics simulations to provide insight into the physical mechanisms that enhance the dielectric constant near 0 V and attribute it to the field‐induced ...
Pramoda Vishnumurthy   +9 more
wiley   +1 more source

Review on Dynamic Contour Tonometry and Ocular Pulse Amplitude

open access: yesOphthalmic Research, 2015
K. Willekens   +6 more
semanticscholar   +1 more source

Stoma‐Shell Nanoarchitecture for Enhanced Plasma Confinement Catalysis in Synthesis of Ethanol from CO2

open access: yesAdvanced Functional Materials, EarlyView.
High‐energy electron impact in plasma catalysis often causes excessive dissociation of active intermediates, limiting C2+ product selectivity. To address this challenge, a bio‐inspired stoma‐shell nanoarchitecture is designed to decouple electron impact from catalytic reaction zones.
Nan Zou   +5 more
wiley   +1 more source

Role of Histidine‐Containing Peptoids in Accelerating the Kinetics of Calcite Growth

open access: yesAdvanced Functional Materials, EarlyView.
Amphiphilic histidine‐containing peptoids mimic carbonic anhydrase (CA) to accelerate calcite step growth. In the presence of Zn2+, they promote the deprotonation of HCO3−, the desolvation of Ca2+, and the reorganization of interfacial hydration layers, thereby reducing the activation barrier for calcite growth.
Mingyi Zhang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy