Results 201 to 210 of about 481,434 (314)

Dual‐Surface Reaction Enabled Organic–Inorganic Hybrid Photodiodes for Faint Light Detection and Imaging

open access: yesAdvanced Functional Materials, EarlyView.
This work proposes a dual‐surface reaction strategy to optimize the interfacial contacts in organic–inorganic photodetectors. 1,4,5,8,9,11‐hexaazatriphenylene hexacarbonitrile (HAT‐CN) and ytterbium layers are designed to react with the Si surface, thus minimizing noise.
Yibo Zhang   +9 more
wiley   +1 more source

In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang   +19 more
wiley   +1 more source

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Charge‐Induced Morphing Gels for Bioinspired Actuation

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel electroactive actuation mechanism that enables the gel material to generate substantial and reversible shape‐changing while preserving topological and isochoric (volumetric) equivalence. The resultant morphing behaviors can mimic the movements of muscle‐driven organelles in nature, including cilia‐like beating and ...
Ciqun Xu   +4 more
wiley   +1 more source

RoHS‐Compliant, Cu‐Zn‐In‐Se‐Based Core/Multi‐shell Quantum Dots with Efficient and Tunable Short‐Wave Infrared Emission

open access: yesAdvanced Functional Materials, EarlyView.
An innovative combination of size‐controlled template synthesis, partial cation exchange reactions, and dual shell passivation offers a new class of RoHS‐compliant, heavy metal‐free Cu‐Zn‐In‐Se/ZnS/Al2O3 core/shell/shell quantum dots (QDs), exhibiting long‐range tunability, highly efficient SWIR emission with remarkably narrow photoluminescence ...
Avijit Saha   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy