Results 161 to 170 of about 854,725 (353)
An environmentally friendly transfer printing method of nm‐thick giant magnetoresistive (GMR) sensors is demonstrated. This method, relying on water and biocompatible polyvinyl alcohol (PVA) polymer without the need of complex treatments, allows transferring thin films to a wide range of biological, organic, and inorganic substrates.
Olha Bezsmertna+7 more
wiley +1 more source
The Incubating Python: A Temperature Study
Fräncis G. Benedict+2 more
openalex +1 more source
Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata) [PDF]
David Pearson, Richard Shine, R. A. How
openalex +1 more source
Decoding the Structure of Benzodithiophene Polymers for High‐Efficiency Organic Solar Cells
This study reveals a unique solid mesophase in top‐performing benzodithiophene‐based polymers for solar cells, comprising stacked solid‐like and liquid‐like layers. Combining nanoscale fibrillar domains with amorphous regions, it introduces a new structural paradigm.
Matteo Sanviti+16 more
wiley +1 more source
A quasi‐2D, light‐absorbing platelet embedded in a thermotropic nematic liquid crystal is activated with light irradiation. Depending on the light intensity, the platelet induces a localized nematic‐isotropic phase transition that triggers the motion. Using different confinements, the platelet can glide in a 2D regime or tilt and glide in a 3D regime ...
Antonio Tavera‐Vázquez+6 more
wiley +1 more source
A Vertically‐Stacked Optoelectronic Sensor for Localized Hemodynamics Monitoring
This work introduces a hemodynamics monitoring sensor that features vertically stacked microLEDs and a heterogeneously integrated photodetector. The vertically stacked microLEDs enable localized measurements, and by designing the interoptode distance according to the depth of the target region, this vertically stacked optoelectronic sensor is ...
Taeyeon Lee+9 more
wiley +1 more source
Substrate Engineering for Durable Omniphobic Liquid‐Like Surfaces
The significant yet less investigated role of substrates in determining the liquid‐repellency and mechanical durability of liquid‐like surfaces (LLSs) is explored. Thick and crack‐free sol–gel silica intermediary layers are developed that can smoothen substrate asperity roughness even at the micron scale, enabling omniphobic polydimethylsiloxane‐based ...
Tao Wen+6 more
wiley +1 more source