Results 151 to 160 of about 438,264 (227)

Exploring Quantum Support Vector Regression for Predicting Hydrogen Storage Capacity of Nanoporous Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
In this study we employed support vector regressor and quantum support vector regressor to predict the hydrogen storage capacity of metal–organic frameworks using structural and physicochemical descriptors. This study presents a comparative analysis of classical support vector regression (SVR) and quantum support vector regression (QSVR) in predicting ...
Chandra Chowdhury
wiley   +1 more source

Feature Selection for Machine Learning‐Driven Accelerated Discovery and Optimization in Emerging Photovoltaics: A Review

open access: yesAdvanced Intelligent Discovery, EarlyView.
Feature selection combined with machine learning and high‐throughput experimentation enables efficient handling of high‐dimensional datasets in emerging photovoltaics. This approach accelerates material discovery, improves process optimization, and strengthens stability prediction, while overcoming challenges in data quality and model scalability to ...
Jiyun Zhang   +5 more
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

News : 1/10 / Center for Financial Studies [PDF]

open access: yes, 2010
Center for Financial Studies
core  

Deep Learning Prediction of Surface Roughness in Multi‐Stage Microneedle Fabrication: A Long Short‐Term Memory‐Recurrent Neural Network Approach

open access: yesAdvanced Intelligent Discovery, EarlyView.
A sequential deep learning framework is developed to model surface roughness progression in multi‐stage microneedle fabrication. Using real‐world experimental data from 3D printing, molding, and casting stages, an long short‐term memory‐based recurrent neural network captures the cumulative influence of geometric parameters and intermediate outputs ...
Abdollah Ahmadpour   +5 more
wiley   +1 more source

Smart Flexible Tactile Sensors: Recent Progress in Device Designs, Intelligent Algorithms, and Multidisciplinary Applications

open access: yesAdvanced Intelligent Discovery, EarlyView.
Flexible tactile sensors have considerable potential for broad application in healthcare monitoring, human–machine interfaces, and bioinspired robotics. This review explores recent progress in device design, performance optimization, and intelligent applications. It highlights how AI algorithms enhance environmental adaptability and perception accuracy
Siyuan Wang   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy