Results 221 to 230 of about 81,951 (325)

A Vertically‐Stacked Optoelectronic Sensor for Localized Hemodynamics Monitoring

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a hemodynamics monitoring sensor that features vertically stacked microLEDs and a heterogeneously integrated photodetector. The vertically stacked microLEDs enable localized measurements, and by designing the interoptode distance according to the depth of the target region, this vertically stacked optoelectronic sensor is ...
Taeyeon Lee   +9 more
wiley   +1 more source

A New Memory Effect in Bulk Crystals of 1T‐TaS2

open access: yesAdvanced Functional Materials, EarlyView.
A new memory effect is discovered in 1T‐TaS₂, appearing as a temperature shift in the metal to insulator transition, coinciding with the recently reported ramp reversal memory. These findings imply that ramp reversal memory is an emergent phenomenon, likely to appear in many different systems that share a few basic properties, which are discussed in ...
Avital Fried   +4 more
wiley   +1 more source

Multifractal theory within quantum calculus

open access: green, 2009
Alexander I. Olemskoi, I. A. Shuda
openalex   +2 more sources

Side‐Chains Engineered Self‐Assembly of Ortho‐Benzodipyrrole‐Based Acceptors: Comprehensive Exploration of Structure‐Interface‐Photovoltaics Correlations

open access: yesAdvanced Functional Materials, EarlyView.
The side‐chain configuration in the bay region of C‐shaped ortho‐benzodipyrrole‐based non‐fullerene acceptors plays a crucial role in their self‐assembly, single‐crystal structures, and optoelectronic properties. The closely correlated molecular structure and performance underscore the importance of minimizing A–A self‐aggregation and enhancing D–A ...
Yung‐Jing Xue   +18 more
wiley   +1 more source

Au@h‐BN Core–Shell Nanostructure as Advanced Shell‐Isolated Nanoparticles for In Situ Electrochemical Raman Spectroscopy in Alkaline Environments

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates the stability and Raman signal enhancement effects of Au@h‐BN nanoparticles in an alkaline electrolyte on. A comparison between conventional SiO2 and h‐BN shells reveals that the h‐BN core‐shell structure provides superior stability and enhanced Raman intensity over multiple cyclic voltammetry cycles.
Jee Hyeon Kim   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy