Results 121 to 130 of about 475,169 (310)
Engineering topological states and quantum-inspired information processing using classical circuits [PDF]
Based on the correspondence between circuit Laplacian and Schrodinger equation, recent investigations have shown that classical electric circuits can be used to simulate various topological physics and the Schrodinger's equation. Furthermore, a series of quantum-inspired information processing have been implemented by using classical electric circuit ...
arxiv +1 more source
Active Learning‐Driven Discovery of Sub‐2 Nm High‐Entropy Nanocatalysts for Alkaline Water Splitting
High‐entropy nanoparticles (HENPs) hold great promise for electrocatalysis, yet optimizing their compositions remains challenging. This study employs active learning and Bayesian Optimization to accelerate the discovery of octonary HENPs for hydrogen and oxygen evolution reactions.
Sakthivel Perumal+5 more
wiley +1 more source
Low‐dimensional halide perovskite thin films, (BA)2(MA)n‐1PbnBr3n+1 (n = 1, 2), exhibit both semiconducting and ferroelectric properties, enabling mechanical and light energy harvesting. Using Cr/Cr₂O₃ or PCBM as barrier layers ensures reproducible ferroelectricity.
Raja Sekhar Muddam+8 more
wiley +1 more source
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai+8 more
wiley +1 more source
Universal Quantum Circuits [PDF]
We define and construct efficient depth-universal and almost-size-universal quantum circuits. Such circuits can be viewed as general-purpose simulators for central classes of quantum circuits and can be used to capture the computational power of the circuit class being simulated.
arxiv
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner+9 more
wiley +1 more source
Identification and Reversible Optical Switching of NV+ Centers in Diamond
NV+ centers in diamond are predicted to coexist with NV0 and NV– centers, but direct experimental confirmation remains challenging. Using positron annihilation spectroscopy with in situ light illumination, a charge transition NV+/0 is observed at 1.234(8) eV.
Marcel Dickmann+13 more
wiley +1 more source
How to Fault-Tolerantly Realize Any Quantum Circuit with Local Operations
We show how to realize a general quantum circuit involving gates between arbitrary pairs of qubits by means of geometrically local quantum operations and efficient classical computation.
Shin Ho Choe, Robert König
doaj +1 more source
Variational quantum algorithm for nonequilibrium steady states
We propose a quantum-classical hybrid algorithm to simulate the nonequilibrium steady state of an open quantum many-body system, named the dissipative-system variational quantum eigensolver (dVQE).
Nobuyuki Yoshioka+3 more
doaj +1 more source
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du+11 more
wiley +1 more source