Results 121 to 130 of about 475,169 (310)

Engineering topological states and quantum-inspired information processing using classical circuits [PDF]

open access: yesAdv. Quantum Technol. 2025, 2400448
Based on the correspondence between circuit Laplacian and Schrodinger equation, recent investigations have shown that classical electric circuits can be used to simulate various topological physics and the Schrodinger's equation. Furthermore, a series of quantum-inspired information processing have been implemented by using classical electric circuit ...
arxiv   +1 more source

Active Learning‐Driven Discovery of Sub‐2 Nm High‐Entropy Nanocatalysts for Alkaline Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy nanoparticles (HENPs) hold great promise for electrocatalysis, yet optimizing their compositions remains challenging. This study employs active learning and Bayesian Optimization to accelerate the discovery of octonary HENPs for hydrogen and oxygen evolution reactions.
Sakthivel Perumal   +5 more
wiley   +1 more source

Self‐Poled Halide Perovskite Ruddlesden‐Popper Ferroelectric‐Photovoltaic Semiconductor Thin Films and Their Energy Harvesting Properties

open access: yesAdvanced Functional Materials, EarlyView.
Low‐dimensional halide perovskite thin films, (BA)2(MA)n‐1PbnBr3n+1 (n = 1, 2), exhibit both semiconducting and ferroelectric properties, enabling mechanical and light energy harvesting. Using Cr/Cr₂O₃ or PCBM as barrier layers ensures reproducible ferroelectricity.
Raja Sekhar Muddam   +8 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Universal Quantum Circuits [PDF]

open access: yesarXiv, 2008
We define and construct efficient depth-universal and almost-size-universal quantum circuits. Such circuits can be viewed as general-purpose simulators for central classes of quantum circuits and can be used to capture the computational power of the circuit class being simulated.
arxiv  

NanoMOF‐Based Multilevel Anti‐Counterfeiting by a Combination of Visible and Invisible Photoluminescence and Conductivity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner   +9 more
wiley   +1 more source

Identification and Reversible Optical Switching of NV+ Centers in Diamond

open access: yesAdvanced Functional Materials, EarlyView.
NV+ centers in diamond are predicted to coexist with NV0 and NV– centers, but direct experimental confirmation remains challenging. Using positron annihilation spectroscopy with in situ light illumination, a charge transition NV+/0 is observed at 1.234(8) eV.
Marcel Dickmann   +13 more
wiley   +1 more source

How to Fault-Tolerantly Realize Any Quantum Circuit with Local Operations

open access: yesPRX Quantum
We show how to realize a general quantum circuit involving gates between arbitrary pairs of qubits by means of geometrically local quantum operations and efficient classical computation.
Shin Ho Choe, Robert König
doaj   +1 more source

Variational quantum algorithm for nonequilibrium steady states

open access: yesPhysical Review Research, 2020
We propose a quantum-classical hybrid algorithm to simulate the nonequilibrium steady state of an open quantum many-body system, named the dissipative-system variational quantum eigensolver (dVQE).
Nobuyuki Yoshioka   +3 more
doaj   +1 more source

Integration of Perovskite/Low‐Dimensional Material Heterostructures for Optoelectronics and Artificial Visual Systems

open access: yesAdvanced Functional Materials, EarlyView.
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy