Results 71 to 80 of about 38,231 (311)

Prospects of Electric Field Control in Perpendicular Magnetic Tunnel Junctions and Emerging 2D Spintronics for Ultralow Energy Memory and Logic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp   +7 more
wiley   +1 more source

Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures

open access: yesAdvanced Functional Materials, EarlyView.
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina   +11 more
wiley   +1 more source

Inexact Quantum Square Root Circuit for NISQ Devices

open access: yesIEEE Access
Noisy intermediate-scale quantum (NISQ) computers face significant reliability challenges because they are vulnerable to quantum noise, which severely limits their fidelity in quantum applications.
Sohrab Sajadimanesh   +3 more
doaj   +1 more source

Bimetallic Nanoparticles as Cocatalysts for Photocatalytic Hydrogen Production

open access: yesAdvanced Functional Materials, EarlyView.
Recent developments have introduced bimetallic nanoparticles as effective cocatalysts for photocatalytic systems. This review explores the rapidly expanding research on bimetallic cocatalysts for photocatalytic production of hydrogen, emphasizing the creation of carrier‐selective contacts, localized surface plasmon resonance effects, methodologies for ...
Yufen Chen   +4 more
wiley   +1 more source

Quantum-shift-register circuits [PDF]

open access: yesPhysical Review A, 2009
17 pages, 18 ...
openaire   +2 more sources

Characterizing the Reproducibility of Noisy Quantum Circuits

open access: yesEntropy, 2022
The ability of a quantum computer to reproduce or replicate the results of a quantum circuit is a key concern for verifying and validating applications of quantum computing.
Samudra Dasgupta, Travis S. Humble
doaj   +1 more source

Demonstration of an All‐Optical AND Gate Mediated by Photochromic Molecules

open access: yesAdvanced Functional Materials, EarlyView.
A logic AND gate that runs on photons is demonstrated. It relies on two spatially separated photochromic molecules that work in tandem. Abstract The realization of a photonic logic AND gate, i.e. a logic AND gate that runs on photons rather than electrons, and where all steps are controlled by light, is demonstrated. In a proof‐of‐principle experiment,
Heyou Zhang   +7 more
wiley   +1 more source

Quantum state discrimination using noisy quantum neural networks

open access: yesPhysical Review Research, 2021
Near-term quantum computers are noisy, and therefore must run algorithms with a low circuit depth and qubit count. Here we investigate how noise affects a quantum neural network (QNN) for state discrimination, which is applicable on near-term quantum ...
Andrew Patterson   +5 more
doaj   +1 more source

Double Helical Plasmonic Antennas

open access: yesAdvanced Functional Materials, EarlyView.
Plasmonic double helical antennas funnel circularly polarized light to the nanoscale, offering strong chiroptical interaction and directional light emission. Extending a single helix design tool, this study combines numerical modeling with experimental validation, revealing large, broadband dissymmetry factors in the visible range.
Aleksei Tsarapkin   +7 more
wiley   +1 more source

Quantum-information processing with circuit quantum electrodynamics [PDF]

open access: yesPhysical Review A, 2007
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubits are capacitively coupled to a single high-Q superconducting coplanar resonator.
Blais, Alexandre   +6 more
openaire   +2 more sources

Home - About - Disclaimer - Privacy