Results 151 to 160 of about 369,878 (291)

Mapping Nanoscale Buckling in Atomically Thin Cr2Ge2Te6

open access: yesAdvanced Functional Materials, EarlyView.
Atomic‐resolution STEM is used to resolve nanoscale buckling in monolayer Cr2Ge2Te₆. A noise‐robust image analysis reconstructs three‐dimensional lattice distortions from single plan‐view images, revealing pronounced defect‐driven nm‐scale out‐of‐plane buckling.
Amy Carl   +20 more
wiley   +1 more source

Pixelation‐Free, Monolithic Iontronic Pressure Sensors Enabling Large‐Area Simultaneous Pressure and Position Recognition via Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
A pixelation‐free, monolithic iontronic pressure sensor enables simultaneous pressure and position sensing over large areas. AC‐driven ion release generates spatially varying impedance pathways depending on the pressure. Machine learning algorithms effectively decouple overlapping pressure–position signals from the multichannel outputs, achieving high ...
Juhui Kim   +10 more
wiley   +1 more source

Carbon Contacts to Proteins Enable Robust, Biocompatible Electronic Junctions with Near‐Activation‐less Conduction Down to 10 K

open access: yesAdvanced Functional Materials, EarlyView.
A robust solid‐state protein junction with a semi‐transparent eC/Au electrode allows photoexcitation of the bacterio‐rhodopsin, bR layer, to isomerize the bR retinal. The resulting photo‐response shows the protein is functional in the solid‐state junction.
Shailendra K. Saxena   +5 more
wiley   +1 more source

Efficient Charge Transport in Zero‐Dimensional Perovskite for Ultrahigh‐Sensitivity X‐Ray Detection

open access: yesAdvanced Functional Materials, EarlyView.
A novel mono‐octahedral 0D Bi‐based Dpy3Bi2I12 perovskite strengthens the internal hydrogen bonds and forms a quasi‐2D lattice, exhibits exceptional charge transport and mobility, achieving high X‐ray sensitivity and ultralow‐dose imaging, and setting a new benchmark for 0D detector performance.
Xin Song   +16 more
wiley   +1 more source

Artificial Intelligence as the Next Visionary in Liquid Crystal Research

open access: yesAdvanced Functional Materials, EarlyView.
The functions of AI in the research laboratory are becoming increasingly sophisticated, allowing the entire process of hypothesis formulation, material design, synthesis, experimental design, and reiterative testing to be automated. In our work, we conceive how the incorporation of AI in the laboratory environment will transform the role and ...
Mert O. Astam   +2 more
wiley   +1 more source

Performance of quantum approximate optimization with quantum error detection

open access: yesCommunications Physics
The quantum approximate optimization algorithm (QAOA) is a promising candidate for scaling up to tackle real-world applications. However, achieving better-than-classical performance with QAOA is believed to require fault tolerance.
Zichang He   +3 more
doaj   +1 more source

Beyond the Edge: Charge‐Transfer Excitons in Organic Donor‐Acceptor Cocrystals

open access: yesAdvanced Functional Materials, EarlyView.
Complex excitonic landscapes in acene–perfluoroacene cocrystals are unveiled by polarization‐resolved optical spectroscopy and many‐body theory. This systematic study of a prototypical model system for weakly interacting donor–acceptor compounds challenges common views of charge‐transfer excitons, providing a refined conceptual framework for ...
Sebastian Anhäuser   +6 more
wiley   +1 more source

Self‐Hybridized Exciton‐Polariton Photodetectors From Layered Metal‐Organic Chalcogenolates

open access: yesAdvanced Functional Materials, EarlyView.
Self‐hybridized exciton‐polariton photodetectors are demonstrated using high refractive index mithrene, eliminating the need for top mirrors. This simplified architecture enables tunable sub‐bandgap photodetection via lower exciton‐polariton states and enhanced carrier transport through ultrafast polariton group velocities.
Bongjun Choi   +3 more
wiley   +1 more source

Two Material Properties from One Wavelength‐Orthogonal Photoresin Enabled by a Monochromatic Laser Integrated Stereolithographic Apparatus (Mono LISA)

open access: yesAdvanced Materials, Volume 37, Issue 13, April 2, 2025.
A single object with dual properties – degradable and non‐degradable – is fabricated in a single print simply by switching the printing colors. The advanced multi‐material printing is enabled by the combination of a fully wavelength‐orthogonal photoresin and a monochromatic tunable laser printer, paving the way for precise multi‐material ...
Xingyu Wu   +5 more
wiley   +1 more source

Ferroelectric Quantum Dots for Retinomorphic In‐Sensor Computing

open access: yesAdvanced Materials, EarlyView.
This work has provided a protocol for fabricating retinomorphic phototransistors by integrating ferroelectric ligands with quantum dots. The resulting device combines ferroelectricity, optical responsiveness, and low‐power operation to enable adaptive signal amplification and high recognition accuracy under low‐light conditions, while supporting ...
Tingyu Long   +26 more
wiley   +1 more source

Home - About - Disclaimer - Privacy