Results 251 to 260 of about 32,729 (313)

Charge Transfer States in Donor–Acceptor Bulk‐Heterojunctions as Triplet–Triplet Annihilation Sensitizer for Solid‐State Photon Upconversion

open access: yesAdvanced Materials Interfaces, EarlyView.
A near‐infrared photosensitizer that facilitates efficient solid‐state photon upconversion by recycling triplets formed within a fullerene‐based donor–acceptor bulk‐heterojunction system is demonstrated. Spectroscopic investigations reveal that the energy of photogenerated charge transfer states of triplet character (3CT) is subsequently transferred to
Maciej Klein   +4 more
wiley   +1 more source

Trapped Fluorine Enables Thermally Stable Broadband Photodetection in Graphene/Fluorinated Graphene Heterostructure

open access: yesAdvanced Materials Technologies, EarlyView.
Fluorinated graphene has opened new opportunities for real‐world applications; however, its working and thermal stability are key issues for practical use. This study successfully demonstrates the stability of a fluorinated graphene‐based photodetector, achieved through a graphene, fluorinated graphene heterostructure (Gr/F‐Gr HS).
Mukesh Kumar Thakur   +11 more
wiley   +1 more source

Programmable Dimensional Lithography with Digital Micromirror Devices for Multifunctional Microarchitectures

open access: yesAdvanced Materials Technologies, EarlyView.
This review explores recent advances in digital micromirror device (DMD)‐based lithography, focusing on its programmable light modulation, multi‐material compatibility, and dimensional patterning strategies. It highlights innovations from optical system design to materials integration and multifunctional applications, positioning DMD lithography as a ...
Yubin Lee   +5 more
wiley   +1 more source

End‐to‐End Sensing Systems for Breast Cancer: From Wearables for Early Detection to Lab‐Based Diagnosis Chips

open access: yesAdvanced Materials Technologies, EarlyView.
This review explores advances in wearable and lab‐on‐chip technologies for breast cancer detection. Covering tactile, thermal, ultrasound, microwave, electrical impedance tomography, electrochemical, microelectromechanical, and optical systems, it highlights innovations in flexible electronics, nanomaterials, and machine learning.
Neshika Wijewardhane   +4 more
wiley   +1 more source

Engineering Thermal Emission with Enhanced Emissivity and Quality Factor Using Bound States in the Continuum and Electromagnetically Induced Absorption

open access: yesAdvanced Optical Materials, EarlyView.
A metal‐based thermal metasurface supporting bound states in the continuum is demonstrated and experimentally shown to achieve a record‐high quality factor of 202 and high emissivity of 0.82. The design offers thermally stable, narrowband mid‐infrared emission, making it ideal for high‐precision gas sensing applications.
Guodong Zhu   +8 more
wiley   +1 more source

Photonic Hybrid Integration: Strategies and Promises of Advanced Additive Manufacturing

open access: yesAdvanced Optical Materials, EarlyView.
Heterogeneous photonic integration combines wafer bonding, transfer printing, and advanced multi‐photon lithography to realize compact, adaptable photonic systems. This review highlights breakthroughs in hybrid materials, metrology, and 4D printing, revealing how the convergence of traditional and emerging fabrication unlocks scalable, high‐performance
Zhitian Shi   +3 more
wiley   +1 more source

Benchmarking Organic Photodiodes at the Noise Floor

open access: yesAdvanced Optical Materials, EarlyView.
A precise measurement framework based on a calibrated, ultra‐low‐noise automated setup with open‐source Python scripts enables accurate benchmarking of photodiodes. The unique combination of time‐dependent current measurement under dark conditions, followed by continuous‐wave faint illumination, facilitates reliable extraction of photocurrent near ...
Siddhartha Saggar   +2 more
wiley   +1 more source

Improved Disorder Resilience in Small‐Footprint Photonic Cavities with Periodicity Breaking

open access: yesAdvanced Optical Materials, EarlyView.
Compact photonic crystal cavities with engineered aperiodicity are demonstrated to sustain high quality factormodes and enhanced reproducibility within a minimal footprint. Combining numerical optimization and near‐field measurements, the study reveals how controlled periodicity breaking improves disorder resilience, offering a robust and scalable ...
Nicoletta Granchi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy