Results 121 to 130 of about 4,317,886 (322)
Self-assembled Cubic Boron Nitride Nanodots
One of the low-dimensional Boron Nitride (BN) forms, namely, cubic-BN (c-BN) nanodots (NDs), offers a variety of novel opportunities in battery, biology, deep ultraviolet light emitting diodes, sensors, filters, and other optoelectronic applications.
Alireza Khanaki +6 more
doaj +1 more source
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida +16 more
wiley +1 more source
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu +5 more
wiley +1 more source
Basic principles of quantum computer ensure more computing power than the principles of classical computers. Quantum computers use quantum mechanical effects such as entanglement and superposition to speed up computing processes compared to classical ...
Alan Bojić
doaj
Hollow poly(heptazine imide) spheres are prepared through a novel approach that integrates hard templating with ionothermal synthesis. This method enables precise control over surface area, pore volume, hydrophilicity, light absorption, band position, and metal composition. These tunable properties facilitate the customized design of semiconductors for
Lingli Ni +10 more
wiley +1 more source
From a database of 170 pentagonal 2D materials, 4 candidates exhibiting altermagnetic ordering are screened. Furthermore, the spin‐splitting and unconventional boundary states in the pentagonal 2D altermagnetic monolayer MnS2 are investigated. A MnS2‐based altermagnetic tunneling junction is designed and, through ab initio quantum transport simulations,
Jianhua Wang +8 more
wiley +1 more source
Room temperature terahertz semiconductor frequency comb
Terahertz frequency combs are highly desired for applications in precision measurements, sensing, spectroscopy and metrology. Here the authors demonstrate the room-temperature chip-based THz frequency comb using nonlinear frequency generation from a mid ...
Quanyong Lu +4 more
doaj +1 more source
Plasmonic photocatalytic ammonia decomposition occurs at near‐room temperature on a plasmonic Au nanocone array under visible light illumination. The nanostructure efficiently harnesses plasmonic modes, leading to increased reaction rates upon plasmon decay.
Thanh‐Lam Bui +17 more
wiley +1 more source
2D Multifunctional Spin‐Orbit Coupled Dirac Nodal Line Materials
A total of 473 nonmagnetic and antiferromagnetic 2D spin‐orbit coupled Dirac nodal line materials are screened, spanning 5 layer groups and 12 magnetic space groups. Furthermore, it integrates their topological properties with electride, multiferroic, and magnetic characteristics, revealing unique systems with expanded functionalities and promising ...
Weizhen Meng +7 more
wiley +1 more source
High-fidelity remote entanglement of trapped atoms mediated by time-bin photons
Photonic interconnects between quantum processing nodes are likely the only way to achieve large-scale quantum computers and networks. The bottleneck in such an architecture is the interface between well-isolated quantum memories and flying photons.
Sagnik Saha +7 more
doaj +1 more source

