Results 241 to 250 of about 17,439,974 (328)
A van der Waals optoelectronic synaptic device based on a ReS2/WSe2 heterostructure and oxygen‐treated h‐BN is presented, which enables both positive and negative PSCs through photocarrier polarity reversal. Bidirectional plasticity arises from gate‐tunable band bending and charge trapping‐induced quasi‐doping.
Hyejin Yoon +9 more
wiley +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate. [PDF]
Huang Y, Xiong HN, Yang Y, Hu ZD, Xi Z.
europepmc +1 more source
Integrative Approaches for DNA Sequence‐Controlled Functional Materials
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo +4 more
wiley +1 more source
Trap state engineering in inverted organic photodetectors (OPDs) is achieved via combined layer‐by‐layer (LbL) processing and poly(N‐vinylcarbazole) (PVK) incorporation. LbL reduces the trap density while PVK additives gradually shift trap states from shallow band‐edge to deep mid‐gap levels, tailoring the energy distribution.
Jingwei Yi +10 more
wiley +1 more source
DNA strands are employed both as dynamic linkers and nanoscale templates for the integration of Ag2S nanoparticles on MoS2, which in turn imparted photothermal responsiveness; this feature permits the selective cargo (fluorophore, quantum dots or an enzyme) release from the MoS2 surface in response to local heat induced by light irradiation.
Kai Chen +3 more
wiley +1 more source
Purcell‐Enhanced Spectrally Precise Emission in Dual‐Microcavity Organic Light‐Emitting Diodes
Spectrally precise emission from broadband organic light‐emitting diodes is realized via a dual‐microcavity strategy. This architecture achieves narrowband emission (full width at half maximum, FWHM = 21 nm) with ultrapure color approaching BT.2020 by enhancing the Purcell effect via coupling of excitons with dual‐microcavity resonance.
Jun Yong Kim +3 more
wiley +1 more source
The article reviews laser‐processed carbons from various precursors, processing mechanism and their application in advanced batteries. The laser process is chemical free, fast, and scalable, enabling improved battery performance and stability for Li, Na, and Zn battery technologies.
Sujit Deshmukh +2 more
wiley +1 more source
A spatiotemporal plasma–mediated laser processing approach is developed to fabricate ultrahigh–aspect ratio nanochannel arrays and corresponding perovskite nanowire arrays within transparent materials for optoelectronics devices. The laser‐fabricated nanochannels serve as templates for controlled perovskite infiltration and crystallization, enabling ...
Taijin Wang +3 more
wiley +1 more source
Lead halide perovskite nanocrystals are promising scintillators but suffer from reabsorption losses and limited compatibility with high‐Z additives. Hybridization of CsPbBr3 nanocrystals with PbBr2‐passivated HfO2 nanoparticle sensitizers, achieved during or after synthesis, produces stable composites with maintained optical quality, improved ...
Francesco Bruni +17 more
wiley +1 more source

