Results 141 to 150 of about 96,588 (331)

High‐Entropy Magnetism of Murunskite

open access: yesAdvanced Functional Materials, EarlyView.
The study of murunskite (K2FeCu3S4) reveals that its magnetic and orbital order emerges in a simple I4/mmm crystal structure with complete disorder in the transition metal positions. Mixed‐valence Fe ions randomly occupy 1/4 of the tetrahedral sites, with the remaining 3/4 being filled by non‐magnetic Cu+ ions.
Davor Tolj   +18 more
wiley   +1 more source

Excitonic Emission Modulation in GaSe/MoS2 Van Der Waals Heterostructure Via Plasmonic Control of Interlayer Charge Transfer

open access: yesAdvanced Functional Materials, EarlyView.
Plasmonic hybridization enables control of light emission in 2D van der Waals heterojunctions. By stacking multilayer GaSe and monolayer MoS2 on a silver film, light emission is enhanced at the edges due to plasmonic effects. In the center, where these effects are absent, charge transfer led to reduced light emission.
Jung Ho Kim   +5 more
wiley   +1 more source

Ab Initio Study on 3D Anisotropic Ferroelectric Switching Mechanism and Coercive Field in HfO2 and ZrO2

open access: yesAdvanced Functional Materials, EarlyView.
This study uncovers a new switching mechanism in HfO2 and ZrO2, where the absence of a non‐polar layer along the a‐direction induces interaction between polar layers. Consequently, the switching barriers for growth are lower than those for nucleation in this direction, leading to a size‐dependent coercive field that matches experimental observations ...
Kun Hee Ye   +6 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

NanoMOF‐Based Multilevel Anti‐Counterfeiting by a Combination of Visible and Invisible Photoluminescence and Conductivity

open access: yesAdvanced Functional Materials, EarlyView.
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner   +9 more
wiley   +1 more source

Identification and Reversible Optical Switching of NV+ Centers in Diamond

open access: yesAdvanced Functional Materials, EarlyView.
NV+ centers in diamond are predicted to coexist with NV0 and NV– centers, but direct experimental confirmation remains challenging. Using positron annihilation spectroscopy with in situ light illumination, a charge transition NV+/0 is observed at 1.234(8) eV.
Marcel Dickmann   +13 more
wiley   +1 more source

Isotopic lifting of analytic and quantum mechanics

open access: yesRevista Técnica de la Facultad de Ingeniería, 2011
In a preceding article we have introduced the isotopies of the differential calculus and of Newton's equations of motion. In this second paper we use these results lo construct the isotopies of analytic and quantum mechanics.
Ruggero María Santilli
doaj  

Single Pair of Weyl Points Evolve From Spin Group‐Protected Nodal Line in Half‐Metallic Ferromagnet V3S4

open access: yesAdvanced Functional Materials, EarlyView.
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy