Results 301 to 310 of about 1,699,778 (381)
Sub‐5 nm double‐gate MOSFETs based on 2D SiAs monolayers are investigated using quantum transport simulations. By engineering source‐drain underlap regions, the devices achieve exceptional on‐currents of up to 1206 µA µm−1, surpassing the ITRS 2028 high‐performance targets.
Dogukan Hazar Ozbey, Engin Durgun
wiley +1 more source
Non-Hermitian quantum walks uncover dynamical quantum phase transitions under self-normal and biorthogonal bases. [PDF]
Li G, Yuan L.
europepmc +1 more source
Single‐chirality (6,5) carbon nanotube (CNT) films, when integrated with RhB molecules to form Type I heterogeneous films, exhibit a more than twofold increase in photoluminescence efficiency and approximately one‐order‐of‐magnitude enhancement in photoelectric conversion efficiency compared to pristine (6,5) CNT films.
Shilong Li +5 more
wiley +1 more source
Unambiguous Quantum State Discrimination in a $\mathcal {PT}$ -Symmetric System of a Single Trapped Ion. [PDF]
Zhu C +5 more
europepmc +1 more source
Emerging Memory and Device Technologies for Hardware‐Accelerated Model Training and Inference
This review investigates the suitability of various emerging memory technologies as compute‐in‐memory hardware for artificial intelligence (AI) applications. Distinct requirements for training‐ and inference‐centric computing are discussed, spanning device physics, materials, and system integration.
Yoonho Cho +6 more
wiley +1 more source
Advancing Energy Materials by In Situ Atomic Scale Methods
Progress in in situ atomic scale methods leads to an improved understanding of new and advanced energy materials, where a local understanding of complex, inhomogeneous systems or interfaces down to the atomic scale and quantum level is required. Topics from photovoltaics, dissipation losses, phase transitions, and chemical energy conversion are ...
Christian Jooss +21 more
wiley +1 more source

