Results 171 to 180 of about 2,219,213 (361)

Ultrahigh‐Yield, Multifunctional, and High‐Performance Organic Memory for Seamless In‐Sensor Computing Operation

open access: yesAdvanced Functional Materials, EarlyView.
Molecular engineering of a nonconjugated radical polymer enables a significant enhancement of the glass transition temperature. The amorphous nature and tunability of the polymer, arising from its nonconjugated backbone, facilitates the fabrication of organic memristive devices with an exceptionally high yield (>95%), as well as substantial ...
Daeun Kim   +14 more
wiley   +1 more source

Highly Stable O‐Tolylbiguanide‐CsPbI3 Quantum Dots and Light‐Emitting Diodes by Synergistic Supramolecular Passivation [PDF]

open access: bronze
Hanming Li   +14 more
openalex   +1 more source

Two‐Dimensional Materials as a Multiproperty Sensing Platform

open access: yesAdvanced Functional Materials, EarlyView.
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana   +11 more
wiley   +1 more source

Multiphoton microscopy of transdermal quantum dot delivery using two photonpolymerization-fabricated polymer microneedles

open access: green, 2010
Shaun D. Gittard   +8 more
openalex   +2 more sources

A gated quantum dot strongly coupled to an optical microcavity

open access: yesNature, 2019
D. Najer   +12 more
semanticscholar   +1 more source

Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals

open access: yesAdvanced Functional Materials, EarlyView.
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus   +5 more
wiley   +1 more source

Mid-infrared InAs/InP quantum-dot lasers. [PDF]

open access: yesLight Sci Appl
Wang Y   +26 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy