Results 201 to 210 of about 885,186 (351)

Active Learning‐Driven Discovery of Sub‐2 Nm High‐Entropy Nanocatalysts for Alkaline Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy nanoparticles (HENPs) hold great promise for electrocatalysis, yet optimizing their compositions remains challenging. This study employs active learning and Bayesian Optimization to accelerate the discovery of octonary HENPs for hydrogen and oxygen evolution reactions.
Sakthivel Perumal   +5 more
wiley   +1 more source

Low-Temperature Saturation of the Dephasing Time and Effects of Microwave Radiation on Open Quantum Dots [PDF]

open access: green, 1999
A. G. Huibers   +5 more
openalex   +1 more source

Engineering a Spin‐Orbit Bandgap in Graphene‐Tellurium Heterostructures

open access: yesAdvanced Functional Materials, EarlyView.
Tellurium intercalation in epitaxial graphene on Ir(111) enables the emergence of a spin–orbit‐induced bandgap with energy spin splitting. By combining STM, ARPES, spin‐resolved ARPES, and DFT, two structural phases are identified, both exhibiting tunable electronic doping.
Beatriz Muñiz Cano   +14 more
wiley   +1 more source

Elastic relaxation of dry-etched Si/SiGe quantum dots [PDF]

open access: green, 1998
Anton A. Darhuber   +7 more
openalex   +1 more source

Spectroelectrochemical Determination of Förster Radii for Triplet‐Polaron Quenching in Phosphorescent Organic Light‐Emitting Diodes

open access: yesAdvanced Functional Materials, EarlyView.
Phosphorescent OLEDs suffer from efficiency roll‐off due to triplet‐polaron quenching (TPQ). This study demonstrates for a large set of host‐guest combinations a spectroelectrochemical method to measure the absorption of charged molecules, enabling determining TPQ Förster radii (2.5–4 nm) from the spectral overlap.
Stan E. A. Jaspars   +5 more
wiley   +1 more source

Preparation of PbS Quantum Dot Materials by the Sol-Gel Process

open access: bronze, 1993
Toshimi Takada   +3 more
openalex   +2 more sources

Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing

open access: yesAdvanced Functional Materials, EarlyView.
The fabrication of patterned transition metal dichalcogenide (TMD)/graphene heterostructures via direct laser writing reveals new interface chemistry and enables efficient, customizable assembly. Selective laser irradiation of functionalized TMD/graphene triggers localized reactions, forming chemically modified interfaces.
Xin Chen   +12 more
wiley   +1 more source

Optical properties of GaAs/AlGaAs quantum dots realized by implantation induced intermixing

open access: green, 1993
F.E. Prins   +5 more
openalex   +2 more sources

Home - About - Disclaimer - Privacy