Results 71 to 80 of about 108,083 (217)
Universal quantum Controlled-NOT gate [PDF]
An investigation of an optimal universal unitary Controlled-NOT gate that performs a specific operation on two unknown states of qubits taken from a great circle of the Bloch sphere is presented. The deep analogy between the optimal universal C-NOT gate and the `equatorial' quantum cloning machine (QCM) is shown.
Stephan Fritzsche, Michael Siomau
openaire +3 more sources
The fabrication of patterned transition metal dichalcogenide (TMD)/graphene heterostructures via direct laser writing reveals new interface chemistry and enables efficient, customizable assembly. Selective laser irradiation of functionalized TMD/graphene triggers localized reactions, forming chemically modified interfaces.
Xin Chen+12 more
wiley +1 more source
Quantum Matrices Using Quantum Gates
Quantum mechanics explains the behavior of matter and its movement with energy in the scale of atoms and subatomic particles. In quantum circuits there are many gates such as Hadamard Gate, Pauli Gates, many more gates for half turns, quarter turns, eighth turns, sixteenth turns and so on, rest for spinning, parametrized etc.
openaire +2 more sources
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai+8 more
wiley +1 more source
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du+11 more
wiley +1 more source
Quantum optical Fredkin gate [PDF]
A simple optical model to realize a reversible, potentially error-free logic gate---a Fredkin gate---is discussed. The device dissipates no energy and makes use of the Kerr nonlinearity to produce intensity-dependent phase shifts. The analysis shows that quantum mechanics permits the operation of error-free logic gates which dissipate no energy ...
openaire +4 more sources
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian+6 more
wiley +1 more source
A two‐step DNA metallization process is presented for the modular assembly of metal sulfide nanoparticles (NPs) on MoS2, with nanoscale control over their separation and ability to concomitantly assemble different kind of NPs. This allowed to tailor the photoinduced electrical response of phototransistors to different wavelengths, according to the ...
Kai Chen+3 more
wiley +1 more source
Quantum process tomography of each directly implementable quantum gate used in the IBM quantum processors is performed to compute gate error in order to check viability of complex quantum operations in the superconductivity-based quantum computers ...
Pathak, Anirban+2 more
core
Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina+11 more
wiley +1 more source