Results 81 to 90 of about 108,083 (217)
Modulating Oxide‐Based Quantum Materials by Ion Implantation
This review highlights how ion implantation, a well developed chip‐technology, enables targeted modulation of oxide‐based quantum materials. This includes tuning of metal‐insulator transitions, magnetism, and superconductivity through selective doping, defect creation, and induced lattice strain. Abstract Ion implantation has emerged as a powerful tool
Andreas Herklotz+2 more
wiley +1 more source
Herein, the synthesis of Ta₂Pd₃S₈ nanowires is reported via scalable liquid cascade exfoliation and their integration into high‐mobility field‐effect transistors (FETs) and sensitive photodetectors, achieving carrier mobility of up to 27.3 cm2 V⁻¹ s⁻¹ and responsivities of 322.40 A W⁻¹ and 1.85 mA W⁻¹ for single nanowire and network devices ...
Kyung Hwan Choi+13 more
wiley +1 more source
Deciding universality of quantum gates
8 pages, minor ...
openaire +3 more sources
Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose
Recent progress in transient devices enabled by (nano)cellulosic materials is reviewed. Transiency mechanisms, advantages of nanocelluloses, and a suite of applications are discussed. A circular thinking approach coupled with life cycle assessment is applied to critically revisit the potential, advantages, and challenges of nanocellulose‐enabled ...
Lucas J. Andrew+2 more
wiley +1 more source
Benchmarking universal quantum gates via channel spectrum. [PDF]
Gu Y, Zhuang WF, Chai X, Liu DE.
europepmc +1 more source
Optoelectronic Devices for In‐Sensor Computing
The raw data obtained directly from sensors in the noisy analogue domain is often unstructured, which lacks a predefined format or organization and does not conform to a specific data model. Optoelectronic devices for in‐sensor visual processing can integrate perception, memory, and processing functions in the same physical units, which can compress ...
Qinqi Ren+7 more
wiley +1 more source
Pushing Radiative Cooling Technology to Real Applications
Radiative cooling controls surface optical properties for solar and thermal radiation, offering solutions for global warming and energy savings. Despite significant advances, key challenges remain: optimizing optical efficiency, maintaining aesthetics, preventing overcooling, enhancing durability, and enabling scalable production.
Chongjia Lin+8 more
wiley +1 more source
Distribution of controlled unitary quantum gates towards factoring large numbers on today's small-register devices. [PDF]
Tănăsescu A+2 more
europepmc +1 more source
Synthetic Aspects and Characterization Needs in MOF Chemistry – from Discovery to Applications
Overcoming the challenges of phase discovery, synthesis optimization and scale‐up, characterization, and computational studies is essential to accelerate the large‐scale application of MOFs. Life‐cycle analyses and techno‐economic analyses need to be performed to realistically assess their potential for industrial relevance.
Bastian Achenbach+4 more
wiley +1 more source
Dynamical-invariant-based holonomic quantum gates: Theory and experiment. [PDF]
Li Y+7 more
europepmc +1 more source