Results 81 to 90 of about 2,063,385 (366)
Quantum optical Fredkin gate [PDF]
A simple optical model to realize a reversible, potentially error-free logic gate---a Fredkin gate---is discussed. The device dissipates no energy and makes use of the Kerr nonlinearity to produce intensity-dependent phase shifts. The analysis shows that quantum mechanics permits the operation of error-free logic gates which dissipate no energy ...
openaire +3 more sources
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai +8 more
wiley +1 more source
A quantum circuit is generalized to a nonunitary one whose constituents are nonunitary gates operated by quantum measurement. It is shown that a specific type of one-qubit nonunitary gates, the controlled-NOT gate, as well as all one-qubit unitary gates ...
HIROAKI TERASHIMA +2 more
core +5 more sources
Quantum gates and circuits [PDF]
A historical review is given of the emergence of the idea of the quantum logic gate from the theory of reversible Boolean gates. I highlight the quantum XOR or controlled NOT as the fundamental two-bit gate for quantum computation. This gate plays a central role in networks for quantum error correction.
openaire +3 more sources
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian +6 more
wiley +1 more source
Combining dynamical decoupling with fault-tolerant quantum computation [PDF]
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected
Lidar, Daniel A. +2 more
core
Quantum Computing and Quantum Algorithms [PDF]
The field of quantum computing and quantum algorithms is studied from the ground up. Qubits and their quantum-mechanical properties are discussed, followed by how they are transformed by quantum gates.
Serban, Daniel
core +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
In the lectures we will be concerned with some aspects of physical implementations of quantum gate operations which are necessary for quantum information processing. We will discuss two possible realizations. One of them is based on qubits being encoded in atomic degrees of freedom where the atoms are manipulated in optical lattices above atom chips ...
Scheel, Stefan +3 more
openaire +2 more sources
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp +7 more
wiley +1 more source

