Results 101 to 110 of about 438,927 (310)

Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing

open access: yesAdvanced Functional Materials, EarlyView.
The fabrication of patterned transition metal dichalcogenide (TMD)/graphene heterostructures via direct laser writing reveals new interface chemistry and enables efficient, customizable assembly. Selective laser irradiation of functionalized TMD/graphene triggers localized reactions, forming chemically modified interfaces.
Xin Chen   +12 more
wiley   +1 more source

Relativistic few-body methods

open access: yesEPJ Web of Conferences, 2016
I discuss the role of relativistic quantum mechanics in few-body physics, various formulations of relativistic few-body quantum mechanics and how they are related.
Polyzou W. N.
doaj   +1 more source

Terahertz‐Driven Ultrafast Dynamics of Rare‐Earth Nickelates by Controlling Only the Charge Degree of Freedom

open access: yesAdvanced Functional Materials, EarlyView.
The THz drive of the Mott insulating state of a rare‐earth nickelate induces instantaneous insulator‐metal transition via quantum tunneling of valence electrons across the bandgap. This transition is pure electronic and highly non‐thermal, which may find its applications in ultrafast opto‐electronics with enhanced performance and minimal device size ...
Gulloo Lal Prajapati   +7 more
wiley   +1 more source

Chasing Charge Carriers: Diffusion Dynamics in Mixed‐n Quasi‐2D Colloidal MAPbBr3 Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
Metal halide perovskites are noted for their tunable optical properties. Colloidal synthesis allows the formation of differently shaped perovskite nanocrystals with varying optical and carrier transport behavior. Three MAPbBr3 morphologies are characterized: nanoplatelets, nanosheets, and nanostripes.
Ronja Maria Piehler   +5 more
wiley   +1 more source

Dissipative and quantum mechanics

open access: yesarXiv: Quantum Physics, 2009
Three existing interpretations of quantum mechanics, given by Heisenberg, Bohm and Madelung, are examined to describe dissipative quantum systems as well. It is found that the Madelung quantum hydrodynamics is the only correct approach. A new stochastic reinterpretation of the quantum mechanics is proposed, which represents the microscopic face of the ...
openaire   +2 more sources

High‐Entropy Magnetism of Murunskite

open access: yesAdvanced Functional Materials, EarlyView.
The study of murunskite (K2FeCu3S4) reveals that its magnetic and orbital order emerges in a simple I4/mmm crystal structure with complete disorder in the transition metal positions. Mixed‐valence Fe ions randomly occupy 1/4 of the tetrahedral sites, with the remaining 3/4 being filled by non‐magnetic Cu+ ions.
Davor Tolj   +18 more
wiley   +1 more source

Recursivity in Quantum Mechanics [PDF]

open access: yesTransactions of the American Mathematical Society, 1983
The techniques of effective descriptive set theory are applied to the mathematical formalism of quantum mechanics in order to see whether it actually provides effective algorithms for the computation of various physically significant quantities, e.g. matrix elements.
openaire   +3 more sources

Excitonic Emission Modulation in GaSe/MoS2 Van Der Waals Heterostructure Via Plasmonic Control of Interlayer Charge Transfer

open access: yesAdvanced Functional Materials, EarlyView.
Plasmonic hybridization enables control of light emission in 2D van der Waals heterojunctions. By stacking multilayer GaSe and monolayer MoS2 on a silver film, light emission is enhanced at the edges due to plasmonic effects. In the center, where these effects are absent, charge transfer led to reduced light emission.
Jung Ho Kim   +5 more
wiley   +1 more source

Agent Inaccessibility as a Fundamental Principle in Quantum Mechanics: Objective Unpredictability and Formal Uncomputability

open access: yesEntropy, 2018
The inaccessibility to the experimenter agent of the complete quantum state is well-known. However, decisive answers are still missing for the following question: What underpins and governs the physics of agent inaccessibility?
Jan Walleczek
doaj   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy