Results 241 to 250 of about 1,050,604 (332)
AI is transforming the research paradigm of battery materials and reshaping the entire landscape of battery technology. This comprehensive review summarizes the cutting‐edge applications of AI in the advancement of battery materials, underscores the critical challenges faced in harnessing the full potential of AI, and proposes strategic guidance for ...
Qingyun Hu +5 more
wiley +1 more source
The Quantum Field Theory of Physics and Mathematics
Howard J. Schnitzer
openalex +2 more sources
TIME-DEPENDENT RESCALINGS AND LYAPUNOV FUNCTIONALS FOR THE VLASOV–POISSON AND EULER–POISSON SYSTEMS, AND FOR RELATED MODELS OF KINETIC EQUATIONS, FLUID DYNAMICS AND QUANTUM PHYSICS [PDF]
Jean Dolbeault, Gerhard Rein
openalex +1 more source
The complementary roles of Poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine (PTAA) and self‐assembly monolayer (SAM) in a composite hole transport layer for rough fluorine‐doped tin oxide substrates are demonstrated, with PTAA preferentially depositing in the valleys and SAM occupying the peaks, resulting in improved surface potential uniformity ...
Yihao Wang +10 more
wiley +1 more source
EFFECTIVE AVERAGE ACTION IN STATISTICAL PHYSICS AND QUANTUM FIELD THEORY [PDF]
C. Wetterich
openalex +1 more source
A novel solid polymer electrolyte (SPE) to overcome interface instability in high‐energy‐density lithium metal batteries has been developed. By enhancing ionic conductivity, mechanical elasticity, and adhesion strength through all‐material UV‐crosslinking, the SPE ensures uniform lithium‐ion flow and stable performance—even after bending or cutting ...
Sung Yeon Bae +7 more
wiley +1 more source
Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth +2 more
wiley +1 more source
Entering the Strong Coupling Regime in Conventional Organic Solar Cells
Organic solar cells convert light into fossil‐free energy, yet they still cannot compete with their silicon counterparts. Strong exciton‐photon coupling can ameliorate some properties of organic solar cells, but it requires additional mirrors that diminish light absorbance. Here, mirror‐free strong exciton‐photon coupling is implemented in conventional
Nicola Peruffo +4 more
wiley +1 more source
The nanoscale structural and chemical transformations in SrTiO3 under Swift‐Heavy‐Ion irradiation at grazing incidence are investigated, emphasizing the formation of well‐ordered nanohillocks at the surface of the material, demonstrating significant material decomposition in the created hillocks with: a phase separation of SrO and TiOx, a reduction in ...
Mohammad S. Jamal +12 more
wiley +1 more source
Recycling of Thermoplastics with Machine Learning: A Review
This review shows how machine learning is revolutionizing mechanical, chemical, and biological pathways, overcoming traditional challenges and optimizing sorting, efficiency, and quality. It provides a detailed analysis of effective feature engineering strategies and establishes a forward‐looking research agenda for a truly circular thermoplastic ...
Rodrigo Q. Albuquerque +5 more
wiley +1 more source

