Results 71 to 80 of about 1,395,355 (286)
Multi-label learning for improving discretely-modulated continuous-variable quantum key distribution
We propose a novel scheme for discretely-modulated continuous-variable quantum key distribution (CVQKD) using machine learning technologies, which called multi-label learning-based CVQKD (ML-CVQKD).
Qin Liao, Gang Xiao, Hai Zhong, Ying Guo
doaj +1 more source
3D Printed Ultra‐Fast Plastic Scintillators Based on Perovskite‐Photocurable Polymer Composite
The demand for radiation detection is increasing in a number of fields, including high‐energy physics, medical imaging, and homeland security. This study serves to demonstrate the potential for the fabrication of fast perovskite‐based scintillators with complex shapes via stereolithographic additive manufacturing, representing a new path toward the ...
Antonella Giuri +16 more
wiley +1 more source
Computational optical imaging with a photonic lantern
Here, the authors demonstrate a route to high resolution microendoscopy using a multicore fibre with a photonic lantern. They show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the ...
Debaditya Choudhury +9 more
doaj +1 more source
Structurally Colored Physically Unclonable Functions with Ultra‐Rich and Stable Encoding Capacity
This study reports a design strategy for generating bright‐field resolvable physically unclonable functions with extremely rich encoding capacity coupled with outstanding thermal and chemical stability. The optical response emerges from thickness‐dependent structural color formation in ZnO features, which are fabricated by physical vapor deposition ...
Abidin Esidir +8 more
wiley +1 more source
A lack of standard approaches for testing and reporting the performance of metal halide perovskites and organic semiconductor radiation detectors has resulted in inconsistent interpretation of performance parameters, impeding progress in the field. This Perspective recommends key metrics and experimental details, which are suggested for reporting in ...
Jessie A. Posar +8 more
wiley +1 more source
MXene/NiCo2S4 2D/3D Heterostructure as a High-Performance Pt-Free Counter Electrode for DSSCs
This study represents a novel 2D/3D heterostructure of MXene/NiCo2S4 composites, which were used for the first time as a high-performance counter-electrode material for Pt-free dye-sensitized solar cells (DSSCs).
Kumar Subalakshmi +3 more
doaj +1 more source
Novel ferrocene derivatives (e.g., FcPhc2) are used as an ultrathin layer hole‐blocking layer, reducing hole injection from the Ag contact. This results in an ultralow noise spectral density of 1.2 × 10−14 A Hz−1/2, and a high specific detectivity of 8.1 × 1012 Jones at −0.5 V.
Eunyoung Hong +16 more
wiley +1 more source
This study uncovers the unexplored role of intermolecular interactions in multiphoton absorption in coordination polymers. By analyzing [Zn2tpda(DMA)2(DMF)0.3], it shows how the electronic coupling of the chromophores and confinement in the MOF enhance two‐and three‐photon absorption.
Simon Nicolas Deger +11 more
wiley +1 more source
The layer‐by‐layer (LbL) assembly of coordination solids, enabled by the surface‐mounted metal‐organic framework (SURMOF) platform, is on the cusp of generating the organic counterpart of the epitaxy of inorganics. The programmable and sequential SURMOF protocol, optimized by machine learning (ML), is suited for accessing high‐quality thin films of ...
Zhengtao Xu +2 more
wiley +1 more source
The THz drive of the Mott insulating state of a rare‐earth nickelate induces instantaneous insulator‐metal transition via quantum tunneling of valence electrons across the bandgap. This transition is pure electronic and highly non‐thermal, which may find its applications in ultrafast opto‐electronics with enhanced performance and minimal device size ...
Gulloo Lal Prajapati +7 more
wiley +1 more source

