Results 91 to 100 of about 775,797 (335)

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Copper Doping Enhances the Activity and Selectivity of Atomically Precise Ag44 Nanoclusters for Photocatalytic CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu   +5 more
wiley   +1 more source

Engineering Porous Hollow Metal‐Poly(Heptazine Imide) Spheres: An Optimized Synthetic Strategy for Controlling Surface, Morphology, and Properties

open access: yesAdvanced Functional Materials, EarlyView.
Hollow poly(heptazine imide) spheres are prepared through a novel approach that integrates hard templating with ionothermal synthesis. This method enables precise control over surface area, pore volume, hydrophilicity, light absorption, band position, and metal composition. These tunable properties facilitate the customized design of semiconductors for
Lingli Ni   +10 more
wiley   +1 more source

Pentagonal 2D Altermagnets: Material Screening and Altermagnetic Tunneling Junction Device Application

open access: yesAdvanced Functional Materials, EarlyView.
From a database of 170 pentagonal 2D materials, 4 candidates exhibiting altermagnetic ordering are screened. Furthermore, the spin‐splitting and unconventional boundary states in the pentagonal 2D altermagnetic monolayer MnS2 are investigated. A MnS2‐based altermagnetic tunneling junction is designed and, through ab initio quantum transport simulations,
Jianhua Wang   +8 more
wiley   +1 more source

Non Thermal‐Driven Photocatalytic Ammonia Decomposition at Near‐Room Temperature on a Plasmonic Nanocone Array

open access: yesAdvanced Functional Materials, EarlyView.
Plasmonic photocatalytic ammonia decomposition occurs at near‐room temperature on a plasmonic Au nanocone array under visible light illumination. The nanostructure efficiently harnesses plasmonic modes, leading to increased reaction rates upon plasmon decay.
Thanh‐Lam Bui   +17 more
wiley   +1 more source

Technology and Politics: The USA National Quantum Strategy

open access: yesGüvenlik Stratejileri Dergisi
This study examines the strategies of the USA for quantum technologies. Using content analysis, it analyzes the main themes, goals, investments, and research and development activities in the relevant strategic documents of the USA.
Murat Kaçer
doaj   +1 more source

2D Multifunctional Spin‐Orbit Coupled Dirac Nodal Line Materials

open access: yesAdvanced Functional Materials, EarlyView.
A total of 473 nonmagnetic and antiferromagnetic 2D spin‐orbit coupled Dirac nodal line materials are screened, spanning 5 layer groups and 12 magnetic space groups. Furthermore, it integrates their topological properties with electride, multiferroic, and magnetic characteristics, revealing unique systems with expanded functionalities and promising ...
Weizhen Meng   +7 more
wiley   +1 more source

Prospects of Electric Field Control in Perpendicular Magnetic Tunnel Junctions and Emerging 2D Spintronics for Ultralow Energy Memory and Logic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy