Results 31 to 40 of about 6,937 (251)
Quark‐Antiquark Effective Potential in Symplectic Quantum Mechanics
Advances in High Energy Physics, Volume 2022, Issue 1, 2022., 2022 In this paper, we study within the structure of Symplectic Quantum Mechanics a bidimensional nonrelativistic strong interaction system which represent the bound state of heavy quark‐antiquark, where we consider a Cornell potential which consists of Coulomb‐type plus linear potentials. First, we solve the Schrödinger equation in the phase space with the Renato Luz, Gustavo Petronilo, Ademir de Santana, Caroline Costa, Ronni Amorim, Rendisley Paiva, Ruilin Zhu +6 morewiley +1 more sourceSystematics of quarkonium production [PDF]
Physics Letters B, 1996 Quarkonium production in high-energy reactions is found to exhibit a behaviour more universal than that expected from velocity scaling. Total rates of quarkonia produced in hadronic interactions as well as Feynman-x and transverse momentum distributions can be described over the full range of accessible energies (15 < sqrt{s} < 1800 GeV) by two ...G. Schüler, R. Vogtopenalex +4 more sourcesBound State Solution Schrödinger Equation for Extended Cornell Potential at Finite Temperature
Advances in High Energy Physics, Volume 2021, Issue 1, 2021., 2021 In this paper, we study the finite temperature‐dependent Schrödinger equation by using the Nikiforov‐Uvarov method. We consider the sum of the Cornell, inverse quadratic, and harmonic‐type potentials as the potential part of the radial Schrödinger equation.A. I. Ahmadov, K. H. Abasova, M. Sh. Orucova, Ricardo G. Felipe +3 morewiley +1 more sourceHeavy Quarkonium Physics [PDF]
arXiv: High Energy Physics - Phenomenology, 2004 This report is the result of the collaboration and research effort of the Quarkonium Working Group over the last three years. It provides a comprehensive overview of the state of the art in heavy-quarkonium theory and experiment, covering quarkonium spectroscopy, decay, and production, the determination of QCD parameters from quarkonium observables ...Brambilla, N., Krämer, M., Mussa, R., Vairo, A., Bali, G., Bodwin, G.T., Braaten, E., Eichten, E., Eidelman, S., Godfrey, S., Hoang, A., Jamin, M., Kharzeev, D., Lombardo, M.P., Lourenco, C., Meyer, A.B., Papadimitriou, V., Patrignani, C., Rosati, M., Sanchis-Lozano, M.A., Satz, H., Soto, J., Besson, D.Z., Bettoni, D., Böhrer, A., Boogert, S., Chang, C.-H., Cooper, P., Crochet, P., Datta, S., Davies, C., Deandrea, A., Faustov, R., Ferguson, T., Galik, R., Harris, F., Iouchtchenko, O., Kaczmarek, O., Karsch, F., Kienzle, M., Kiselev, V.V., Klein, S.R., Kroll, P., Kronfeld, A., Kuang, Y.-P., Laporta, V., Lee, J., Leibovich, A., Ma, J.P., Mackenzie, P., Maiani, L., Mangano, M.L., Meyer, A., Mo, X.H., Morningstar, C., Nairz, A., Napolitano, J., Olsen, S., Penin, A., Petreczky, P., Piccinini, F., Pineda, A., Polosa, A.D., Rapp, R., Ramello, L., Richard, J.-M., Riguer, V., Ricciardi, S., Robutti, E., Schneider, O., Scomparin, E., Simone, J., Skwarnicki, T., Stancari, G., Stewart, I.W., Sumino, Yu., Teubner, T., Tseng, J., Vogt, R., Wang, P., Yabsley, B., Yuan, C.Z., Zantow, F., Zhao, Z.G., Zieminski, A. +84 moreopenaire +7 more sourcesConfinement of Fermions in Tachyon Matter at Finite Temperature
Advances in High Energy Physics, Volume 2021, Issue 1, 2021., 2021 We study a phenomenological model that mimics the characteristics of QCD theory at finite temperature. The model involves fermions coupled with a modified Abelian gauge field in a tachyon matter. It reproduces some important QCD features such as confinement, deconfinement, chiral symmetry, and quark‐gluon‐plasma (QGP) phase transitions.Adamu Issifu, Julio C. M. Rocha, Francisco A. Brito, Edward Sarkisyan Grinbaum +3 morewiley +1 more sourceInclusive quarkonium production in pp collisions at
$$\sqrt{s}$$
s
= 5.02 TeV [PDF]
The European Physical Journal C, 2021 This article reports on the inclusive production cross section of several quarkonium states, $$\textrm{J}/\psi $$ J / ψ , $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) , $$\Upsilon \mathrm (1S)$$ Υ ( 1 S ) , $$\Upsilon \mathrm{(2S)}$$ Υ ( 2 S ) , and $$\Upsilon ...S. Acharya, D. Adamová, A. Adler, J. Adolfsson, G. Aglieri Rinella, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, S. Ahn, I. Ahuja, Z. Akbar, A. Akindinov, M. Al-Turany, S. N. Alam, D. Aleksandrov, B. Alessandro, H. Alfanda, R. Alfaro Molina, B. Ali, Y. Ali, A. Alici, N. Alizadehvandchali, A. Alkin, J. Alme, T. Alt, I. Altsybeev, M. Anaam, C. Andrei, D. Andreou, A. Andronic, M. Angeletti, V. Anguelov, F. Antinori, P. Antonioli, C. Anuj, N. Apadula, L. Aphecetche, H. Appelshäuser, S. Arcelli, R. Arnaldi, I. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, S. Aziz, M. D. Azmi, A. Badalà, Y. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Balbino, A. Baldisseri, B. Baliś, D. Banerjee, R. Barbera, L. Barioglio, M. Barlou, G. G. Barnaföldi, L. Barnby, V. Barret, C. Bartels, K. Barth, E. Bartsch, F. Baruffaldi, N. Bastid, S. Basu, G. Batigne, B. Batyunya, D. Bauri, J. L. Alba, I. Bearden, C. Beattie, P. Becht, I. Belikov, A. B. Hechavarria, F. Bellini, R. Bellwied, S. Belokurova, V. Belyaev, G. Bencédi, S. Beolè, A. Bercuci, Y. Berdnikov, A. Berdnikova, L. Bergmann, M. Besoiu, L. Betev, P. Bhaduri, A. Bhasin, I. R. Bhat, M. A. Bhat, B. Bhattacharjee, P. Bhattacharya, L. Bianchi, N. Bianchi, J. Bielcik, J. Bielčíková, J. Biernat, A. Bilandzic, G. Bíró, S. Biswas, J. Blair, D. Blau, M. B. Blidaru, C. Blume, G. Boca, F. Bock, A. Bogdanov, S. Boi, J. Bok, L. Boldizsár, A. Bolozdynya, M. Bombara, P. Bond, G. Bonomi, H. Borel, A. Borissov, H. Bossi, E. Botta, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G. Bruno, M. Buckland, D. Budnikov, H. Buesching, S. Bufalino, O. Bugnon, P. Buhler, Z. Buthelezi, J. Butt, A. Bylinkin, S. Bysiak, M. Cai, H. Caines, A. Calivà, E. Calvo Villar, J. Camacho, R. S. Camacho, P. Camerini, F. Canedo, F. Carnesecchi, R. Caron, J. Castillo Castellanos, E. Casula, F. Catalano, C. Ceballos Sanchez, P. Chakraborty, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhyay, A. Chauvin, T. Chavez, T. Cheng, C. Cheshkov, B. Cheynis, V. Chibante Barroso, D. Chinellato, S. Cho, P. Chochula, P. Christakoglou, C. H. Christensen, P. Christiansen, T. Chujo, C. Cicalò, L. Cifarelli, F. Cindolo, M. R. Ciupek, G. Clai, J. Cleymans, F. Colamaria, J. S. Colburn, D. Colella, A. Collu, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J. G. Contreras, M. Coquet, T. Cormier, P. Cortese, M. R. Cosentino, F. Costa, S. Costanza, P. Crochet, R. Cruz-Torres, E. Cuáutle, P. Cui, L. Cunqueiro, A. Dainese, F. Damas, M. C. Danisch, A. Danu, I. Das, P. Das, Samir R Das, S. Dash, A. De Caro, G. de Cataldo, L. de Cilladi, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, S. Deb, H. F. Degenhardt, K. Deja, L. Stritto, W. Deng, P. Dhankher, D. Di Bari, A. Di Mauro, R. Diaz, T. Dietel, Y. Ding, R. Divià, D. Dixit, Ø. Djuvsland, U. Dmitrieva, J. Do, A. Dobrin, B. Dönigus, A. Dubey, A. Dubla, S. Dudi, M. Dukhishyam, P. Dupieux, N. Dzalaiova, T. M. Eder, R. Ehlers, V. Eikeland, F. Eisenhut, D. Elia, B. Erazmus, F. Ercolessi, F. Erhardt, A. Erokhin, M. R. Ersdal, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, A. Fantoni, M. Fasel, P. Fecchio, A. Feliciello, G. Feofilov, A. Fernàndez Tèllez, A. Ferrero, A. Ferretti, V. Feuillard, J. Figiel, S. Filchagin, D. Finogeev, F. Fionda, G. Fiorenza, Fernando Antonio Flor, A. Flores, S. Foertsch, S. Fokin, E. Fragiacomo, E. Frajna, U. Fuchs, N. Funicello, C. Furget, A. Furs, J. Gaardhøje, M. Gagliardi, A. Gago, A. Gal, C. D. Galván, P. Ganoti, C. Garabatos, J. R. A. Garcia, E. Garcia-Solis, K. Garg, C. Gargiulo, A. Garibli, K. Garner, P. Gasik, E. Gauger, A. Gautam, M. Gay Ducati, M. Germain, J. Ghosh, P. Ghosh, S. Ghosh, M. Giacalone, P. Gianotti, P. Giubellino, P. Giubilato, A. Glaenzer, P. Glässel, D. Goh, V. Gonzalez, L. González-Trueba, S. Gorbunov, M. Gorgon, L. Görlich, S. Gotovac, V. Grabski, L. Graczykowski, L. Greiner, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, F. Grosa, J. Grosse-Oetringhaus, R. Grosso, G. G. Guardiano, R. Guernane, M. Guilbaud, K. Gulbrandsen, T. Gunji, W. Guo, A. Gupta, R. Gupta, S. P. Guzman, L. Gyulai, M. Habib, C. Hadjidakis, H. Hamagaki, M. Hamid, R. Hannigan, M. R. Haque, A. Harlenderova, J. W. Harris, A. Harton, J. Hasenbichler, H. Hassan, D. Hatzifotiadou, P. Hauer, L. Havener, S. Heckel, E. Hellbär, H. Helstrup, T. Herman, E. G. Hernández, G. Herrera Corral, F. Herrmann, K. Hetland, H. Hillemanns, C. Hills, B. Hippolyte, B. Hofman, B. Hohlweger, J. Honermann, G. Hong, D. Horak, S. Hornung, A. Horzyk, R. Hosokawa, Y. Hou, P. Hristov, C. Huang, C. Hughes, P. Huhn, L. Huhta, C. V. Hulse, T. Humanic, H. Hushnud, L. A. Husova, A. Hutson, J. Iddon, R. Ilkaev, H. Ilyas, M. Inaba, G. Innocenti, M. Ippolitov, A. Isakov, T. Isidori, M. S. Islam, M. Ivanov, V. Ivanov, V. Izucheev, M. Jablonski, B. Jacak, N. Jacazio, P. Jacobs, S. Jadlovska, J. Jadlovský, S. Jaelani, C. Jahnke, M. Jakubowska, A. Jalotra, M. Janik, T. Janson, M. Jercic, O. Jevons, A. Jimenez, F. Jonas, P. Jones, J. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, P. Kalinak, A. S. Kalteyer, A. Kalweit, V. Kaplin, A. Karasu Uysal, D. Karatovic, O. Karavichev, T. Karavicheva, P. Karczmarczyk, E. Karpechev, V. Kashyap, A. Kazantsev, U. Kebschull, R. Keidel, D. Keijdener, M. Keil, B. Ketzer, Z. Khabanova, A. Khan, S. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, B. Kileng, B. Kim, C. Kim, D. Kim, E. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J. Kitowski, J. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, T. Klemenz, A. Kluge, A. Knospe, C. Kobdaj, M. Köhler, T. Kollegger, A. Kondratyev, N. Kondratyeva, E. Kondratyuk, J. Konig, S. Konigstorfer, P. Konopka, G. Kornakov, S. D. Koryciak, A. Kotliarov, O. Kovalenko, V. Kovalenko, M. Kowalski, I. Králik, A. Kravčáková, L. Kreis, M. Krivda, F. Krizek, K. Gajdosova, M. Kroesen, M. Krüger, E. Kryshen, M. Krzewicki, V. Kučera, C. Kuhn, P. Kuijer, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kundu, P. Kurashvili, A. Kurepin, A. Kurepin, A. Kuryakin, S. Kushpil, J. Kvapil, M. Kweon, J. Kwon +499 moresemanticscholar +1 more sourceCharmonium Properties Using the Discrete Variable Representation (DVR) Method
Advances in High Energy Physics, Volume 2021, Issue 1, 2021., 2021 The Schrödinger equation is solved numerically for charmonium using the discrete variable representation (DVR) method. The Hamiltonian matrix is constructed and diagonalized to obtain the eigenvalues and eigenfunctions. Using these eigenvalues and eigenfunctions, spectra and various decay widths are calculated.Bhaghyesh A., Shi Hai Dongwiley +1 more source