Results 111 to 120 of about 70,227 (292)

Hydrogen‐Bond‐Rich Supramolecular Multiblock Copolymers Facilitate Rapid Zn2+ Migration in Quasi‐Solid‐State Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The disordered growth of dendrites, corrosion, parasitic side reactions, slow de‐solvation kinetics, and inherent safety risks significantly hinder the practical deployment of conventional liquid electrolyte zinc‐ion batteries. In contrast, the novel PU‐EG+DMPA‐Zn polyurethane quasi‐solid‐state electrolyte, enriched with abundant polar functional ...
Ruiqi Liu   +10 more
wiley   +1 more source

Tracking the Dynamic and Interactive Metal Oxidation Changes in CoFe, CoNi, and NiFe Bimetallic Hydroxides for Electrocatalytic Oxygen Evolution

open access: yesAdvanced Functional Materials, EarlyView.
Operando hard X‐ray absorption spectroscopy is applied to track the dynamic and interactive metal oxidation changes in iron group bimetallic hydroxides under different chemical and electrochemical conditions. It shows that Co and Fe oxidation are relatively equal and synchronized in CoFeOxHy.
Jinzhen Huang   +6 more
wiley   +1 more source

Theoretical study on the prediction of optical properties and thermal stability of fullerene nanoribbons

open access: yesScientific Reports
In this work, we predicted two different configurations of fullerene nanoribbons (quasi-hexagonal phase (qHP) and quasi-tetragonal phase (qTP)) based on two-dimensional fullerenes, with widths of 1, 2, and 3 fullerene units, respectively.
Haonan Bai, Xinwen Gai, Lulu Sun, Ji Ma
doaj   +1 more source

Full‐Spectrum Solar Harvesting and Desalination Enabled by Supra‐Nano Amorphous Ruthenium Dioxide – Mineral Composites

open access: yesAdvanced Functional Materials, EarlyView.
A mineral‐based supra‐nano amorphous ruthenium dioxide composite (a‐Ru0.5‐AM) was designed, achieving 97% broadband solar absorption. Under one sun, it reaches 87.91 ± 0.32 °C with a distinct thermal buffering effect that favors thermal confinement.
Yunchen Long   +13 more
wiley   +1 more source

Insights on the Thermal Stability of the Sb2Se3 Quasi‐1D Photovoltaic Technology

open access: green, 2021
Pedro Vidal‐Fuentes   +8 more
openalex   +2 more sources

Multi‐Ion Doping Controlled CEI Formation in Structurally‐Stable High‐Energy Monoclinic‐Phase NASICON Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The graphical abstract illustrates the synthesis pathway, morphological feature, and thermodynamic feasibility of entropy‐engineered NASICON cathodes for sodium‐ion batteries. Abstract Overcoming the energy density limitations of sodium‐ion batteries (NIBs) requires innovative strategies to optimize cathode materials.
Sharad Dnyanu Pinjari   +9 more
wiley   +1 more source

Tailored Polymer Hole‐Transporting Materials with Multisite Passivation Functions for Effective Buried‐Interface Engineering of Inverted Quasi‐2D Perovskite Solar Cells

open access: yesAdvanced Science
Although quasi‐2D Ruddlesden‒Popper (RP) perovskite exhibits advantages in stability, their photovoltaic performance are still inferior to 3D counterparts.
Xiujie Zhao   +8 more
doaj   +1 more source

Reducing Open‐Circuit Voltage Losses in Wide‐Bandgap FAPbBr3 Perovskite Solar Cells for Continuous Unassisted Light‐Driven Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
The combination of formamidinium thiocyanate and 1,3‐propane diammonium iodide for bulk and top‐surface passivation, and a ternary fullerene blend to improve energy band alignment, suppresses energy losses in wide‐bandgap FAPbBr3 perovskite solar cells.
Laura Bellini   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy