Results 1 to 10 of about 201,281 (371)
Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds [PDF]
npj Quantum Information, 2022 By using the dry etching process of tantalum (Ta) film, we had obtained transmon qubit with the best lifetime (T1) 503 us, suggesting that the dry etching process can be adopted in the following multi-qubit fabrication with Ta film.Chenlu Wang, Xuegang Li, Huikai Xu, Zhiyuan Li, Junhua Wang, Zhen Yang, Z. Mi, Xuehui Liang, T. Su, Chuhong Yang, Guan-Shiung Wang, Wenyan Wang, Yongchao Li, Mo Chen, Chengyao Li, Kehuan Linghu, Jiaxiu Han, Yingshan Zhang, Yulong Feng, Yu Song, Teng Ma, Jingning Zhang, Ruixia Wang, Peng Zhao, Weiyang Liu, G. Xue, Yirong Jin, Haifeng Yu +27 moresemanticscholar +2 more sourcesSuppressing quantum errors by scaling a surface code logical qubit [PDF]
Nature, 2022 Practical quantum computing will require error rates well below those achievable with physical qubits. Quantum error correction^ 1 , 2 offers a path to algorithmically relevant error rates by encoding logical qubits within many physical qubits, for which R. Acharya, I. Aleiner, R. Allen, T. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, R. Babbush, D. Bacon, J. Bardin, J. Basso, A. Bengtsson, S. Boixo, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. Buckley, D. Buell, T. Burger, B. Burkett, N. Bushnell, Yu Chen, Zijun Chen, B. Chiaro, J. Cogan, R. Collins, P. Conner, W. Courtney, A. Crook, B. Curtin, D. Debroy, A. Barba, S. Demura, A. Dunsworth, D. Eppens, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, L. F. Burgos, E. Forati, A. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, A. Dau, J. Gross, S. Habegger, Michael C. Hamilton, M. Harrigan, S. Harrington, Oscar Higgott, J. Hilton, Michael J. Hoffmann, Sabrina Hong, Trent Huang, A. Huff, W. Huggins, L. Ioffe, S. Isakov, J. Iveland, E. Jeffrey, Zhang Jiang, Cody Jones, P. Juhás, D. Kafri, K. Kechedzhi, J. Kelly, T. Khattar, M. Khezri, M. Kieferov'a, Seon Kim, A. Kitaev, P. Klimov, A. Klots, A. Korotkov, F. Kostritsa, J. Kreikebaum, D. Landhuis, P. Laptev, K. Lau, L. Laws, Joonho Lee, Kenny Lee, B. Lester, A. Lill, Wayne Liu, A. Locharla, E. Lucero, F. Malone, Jeffrey Marshall, O. Martin, J. McClean, T. McCourt, M. McEwen, A. Megrant, B. Costa, X. Mi, K. Miao, M. Mohseni, S. Montazeri, A. Morvan, E. Mount, W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan, H. Neven, M. Newman, J. Ng, A. Nguyen, M. Nguyen, M. Niu, T. O’Brien, A. Opremcak, J. Platt, A. Petukhov, R. Potter, L. Pryadko, C. Quintana, P. Roushan, N. Rubin, N. Saei, D. Sank, K. Sankaragomathi, K. Satzinger, H. Schurkus, C. Schuster, M. Shearn, A. Shorter, V. Shvarts, J. Skruzny, V. Smelyanskiy, W. C. Smith, G. Sterling, D. Strain, Yuan Su, M. Szalay, A. Torres, G. Vidal, B. Villalonga, C. V. Heidweiller, T. White, C. Xing, Z. Yao, P. Yeh, Juhwan Yoo, G. Young, Adam Zalcman, Yaxing Zhang, N. Zhu +157 moresemanticscholar +1 more sourceUniversal control of a six-qubit quantum processor in silicon [PDF]
Nature, 2022 Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably1. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting.S. Philips, M. Ma̧dzik, S. Amitonov, S. L. de Snoo, M. Russ, N. Kalhor, C. Volk, W. Lawrie, D. Brousse, L. Tryputen, B. P. Wuetz, A. Sammak, M. Veldhorst, G. Scappucci, L. Vandersypen +14 moresemanticscholar +1 more sourceQuantum walks on a programmable two-dimensional 62-qubit superconducting processor [PDF]
Science, 2021 Simulating quantum walkers Quantum walks are the quantum mechanical analogs of classical random walks, describing the propagation of a quantum walker across a lattice, and find application in developing algorithms for simulating quantum many-body systems.M. Gong, Shiyu Wang, C. Zha, Ming-Cheng Chen, Heliang Huang, Yulin Wu, Q. Zhu, You-Wei Zhao, Shaowei Li, Shaojun Guo, H. Qian, Y. Ye, Fusheng Chen, C. Ying, Jiale Yu, D. Fan, Dachao Wu, H. Su, H. Deng, H. Rong, Kaili Zhang, S. Cao, Jin Lin, Yu Xu, Lihua Sun, Cheng Guo, Na Li, Futian Liang, V. Bastidas, K. Nemoto, W. Munro, Y. Huo, Chaoyang Lu, Cheng-Zhi Peng, Xiaobo Zhu, Jian-Wei Pan +35 moresemanticscholar +1 more sourceRobust multi-qubit quantum network node with integrated error detection [PDF]
Science, 2022 Long-distance quantum communication and networking require quantum memory nodes with efficient optical interfaces and long memory times. We report the realization of an integrated two-qubit network node based on silicon-vacancy centers (SiVs) in diamond ...P. Stas, Y. Huan, B. Machielse, E. Knall, A. Suleymanzade, B. Pingault, M. Sutula, S. Ding, C. Knaut, D. Assumpcao, Yan-Cheng Wei, M. Bhaskar, R. Riedinger, D. Sukachev, Hongkun Park, Marko Lonvcar, D. Levonian, M. Lukin +17 moresemanticscholar +1 more sourceHartree-Fock on a superconducting qubit quantum computer [PDF]
Science, 2020 Twelve-qubit quantum computing for chemistry Accurate electronic structure calculations are considered one of the most anticipated applications of quantum computing that will revolutionize theoretical chemistry and other related fields.F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends, S. Boixo, M. Broughton, B. Buckley, D. Buell, B. Burkett, N. Bushnell, Yu Chen, Zijun Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, E. Farhi, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, S. Habegger, M. Harrigan, A. Ho, Sabrina Hong, Trent Huang, W. Huggins, L. Ioffe, S. Isakov, E. Jeffrey, Zhang Jiang, Cody Jones, D. Kafri, K. Kechedzhi, J. Kelly, Seon Kim, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, Mike Lindmark, E. Lucero, O. Martin, J. Martinis, J. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, H. Neven, M. Niu, T. O’Brien, E. Ostby, A. Petukhov, Harald Putterman, C. Quintana, P. Roushan, N. Rubin, D. Sank, K. Satzinger, V. Smelyanskiy, D. Strain, Kevin J Sung, M. Szalay, Tyler Y Takeshita, A. Vainsencher, T. White, N. Wiebe, Z. Yao, P. Yeh, Adam Zalcman +80 moresemanticscholar +1 more sourceBeating the break-even point with a discrete-variable-encoded logical qubit [PDF]
Nature, 2022 Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time^ 1 .Zhongchu Ni, Sai Li, Xiaowei Deng, Yanyan Cai, Libo Zhang, Weiting Wang, Zhen‐Biao Yang, Haifeng Yu, Fei Yan, Song Liu, Chang-Ling Zou, Luyan Sun, Shi-Biao Zheng, Yuan Xu, Dapeng Yu +14 moresemanticscholar +1 more sourceParameterizing qudit states
Discrete and Continuous Models and Applied Computational Science, 2021 Quantum systems with a finite number of states at all times have been a primary element of many physical models in nuclear and elementary particle physics, as well as in condensed matter physics.Arsen Khvedelidze, Dimitar Mladenov, Astghik Torosyan +2 moredoaj +1 more sourceHigh fidelity two-qubit gates on fluxoniums using a tunable coupler [PDF]
npj Quantum Information, 2022 Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale superconductor-based quantum computing due to their better coherence and larger anharmonicity.I. N. Moskalenko, I. A. Simakov, N. Abramov, Alexander A. Grigorev, D. O. Moskalev, Anastasiya A. Pishchimova, N. Smirnov, E. V. Zikiy, I. Rodionov, I. Besedin +9 moresemanticscholar +1 more source