Results 271 to 280 of about 198,128 (343)

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Atomically Revealing Bulk Point Defect Dynamics in Hydrogen‐Driven γ‐Fe2O3 → Fe3O4 → FeO Transformation

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu   +14 more
wiley   +1 more source

Integrative Approaches for DNA Sequence‐Controlled Functional Materials

open access: yesAdvanced Functional Materials, EarlyView.
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo   +4 more
wiley   +1 more source

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Toughening β‐Ga2O3 via Mechanically Seeded Dislocations

open access: yesAdvanced Functional Materials, EarlyView.
β‐Ga2O3 is promising for next‐generation semiconductors but its brittleness limits flexible and high‐precision applications. Here, mechanically seeded dislocations introduced by surface deformation improved damage tolerance in (001) β‐Ga2O3. Nanoindentation and characterization show dislocations suppress cleavage cracks by enabling stable plastic ...
Zanlin Cheng   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy