Results 181 to 190 of about 93,688 (215)
Curvature‐tuned auxetic lattices are designed, fabricated, and mechanically characterized to reveal how geometric curvature governs stretchability, stress redistribution, and Poisson's ratio evolution. Photoelastic experiments visualize stress pathways, while hyperelastic simulations quantify deformation mechanics.
Shuvodeep De +3 more
wiley +1 more source
Herein, environmental scanning electron microscopy (ESEM) is discussed as a powerful extension of conventional SEM for life sciences. By combining high‐resolution imaging with variable pressure and humidity, ESEM allows the analysis of untreated biological materials, supports in situ monitoring of hydration‐driven changes, and advances the functional ...
Jendrian Riedel +6 more
wiley +1 more source
A Comparative Study of Deep Learning and Classical Modeling Approaches for Protein-Ligand Binding Pose and Affinity Prediction in Coronavirus Main Proteases. [PDF]
Liu Y, Tang H, Niu T, Wang J.
europepmc +1 more source
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart +3 more
wiley +1 more source
Perceptions of Knowledge and Experience in Nature-Based Health Interventions. [PDF]
Smock CR +4 more
europepmc +1 more source
A novel, temperature‐controlled post‐consolidation unit is developed to test its potential to improve the melt impregnation process used to manufacture continuous fiber‐reinforced filaments for additive manufacturing of high‐performance thermoplastics.
Daniel Beermann +2 more
wiley +1 more source

