Where Is the Clean Air? A Bayesian Decision Framework for Personalised Cyclist Route Selection Using R-INLA [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Dawkins, LC +5 more
openaire +4 more sources
Numerical Recipes for Landslide Spatial Prediction Using R-INLA [PDF]
The geomorphological community typically assesses the landslide susceptibility at the catchment or larger scales through spatial predictive models. However, the spatial information is conveyed only through the geographical distribution of the covariates.
Lombardo, Luigi +2 more
openaire +4 more sources
Spatial Data Analysis with R-INLA with Some Extensions
The integrated nested Laplace approximation (INLA) provides an interesting way of approximating the posterior marginals of a wide range of Bayesian hierarchical models.
Roger Bivand +2 more
doaj +1 more source
A Bayesian spatio-temporal model of panel design data: airborne particle number concentration in Brisbane, Australia [PDF]
This paper outlines a methodology for semi-parametric spatio-temporal modelling of data which is dense in time but sparse in space, obtained from a split panel design, the most feasible approach to covering space and time with limited equipment. The data
Box G. E. P. +6 more
core +2 more sources
A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA [PDF]
AbstractIn air pollution studies, dispersion models provide estimates of concentration at grid level covering the entire spatial domain and are then calibrated against measurements from monitoring stations. However, these different data sources are misaligned in space and time. If misalignment is not considered, it can bias the predictions.
C. Forlani +4 more
openaire +6 more sources
Modelación espacio-temporal de la incidencia acumulada de COVID-19 en municipios de Chiapas
El trabajo tiene como finalidad analizar la evolución de la tasa de incidencia acumulada de COVID-19 en los municipios de Chiapas, entre los meses de Febrero a Julio del año 2020, a partir de la aplicación de tres modelos bayesianos jerárquicos espacio ...
Gerardo Núñez Medina
doaj +1 more source
Fast and accurate Bayesian model criticism and conflict diagnostics using R‐INLA [PDF]
Bayesian hierarchical models are increasingly popular for realistic modelling and analysis of complex data. This trend is accompanied by the need for flexible, general and computationally efficient methods for model criticism and conflict detection. Usually, a Bayesian hierarchical model incorporates a grouping of the individual data points, as, for ...
Ferkingstad, Egil +2 more
openaire +3 more sources
El trabajo busca modelar la distribución de la tasa de incidencia acumulada de COVID-19 en los municipios de México a través del ajuste de tres modelos lineales generalizados (en competencia) con efectos espaciales y temporales y función de enlace ...
Gerardo Núñez Medina
doaj +6 more sources
Modelación de la sobrepoblación relativa en localidades de Chiapas: análisis espacial bayesiano
El objetivo de este trabajo es identificar patrones de distribución espacial de la sobrepoblación relativa, medida por la Población Económicamente Activa y la migración, en localidades del estado de Chiapas en 2020.
Cuauhtémoc Calderón Villarreal +2 more
doaj +1 more source
Discrete versus continuous domain models for disease mapping [PDF]
The main goal of disease mapping is to estimate disease risk and identify high-risk areas. Such analyses are hampered by the limited geographical resolution of the available data.
Konstantinoudis, Garyfallos +3 more
core +2 more sources

