Results 211 to 220 of about 319,639 (338)

Next‐Generation Bio‐Reducible Lipids Enable Enhanced Vaccine Efficacy in Malaria and Primate Models

open access: yesAdvanced Functional Materials, EarlyView.
Structure–activity relationship (SAR) optimization of bio‐reducible ionizable lipids enables the development of highly effective lipid nanoparticle (LNP) mRNA vaccines. Lead LNPs show superior tolerability and antibody responses in rodents and primates, outperforming approved COVID‐19 vaccine lipids.
Ruben De Coen   +30 more
wiley   +1 more source

Transparent Inorganic–Organic Bilayer Neural Electrode Array and Integration to Miniscope System for In Vivo Calcium Imaging and Electrophysiology

open access: yesAdvanced Functional Materials, EarlyView.
This study presents the BioCLEAR system, a highly transparent and conductive neural electrode array composed of silver nanowires (AgNWs) and doped PEDOT:PSS, enabling neural recordings with minimal optical artifacts. When integrated with a GRIN lens, this cost‐effective neural implant allows simultaneous electrophysiological recording and GCaMP6‐based ...
Dongjun Han   +17 more
wiley   +1 more source

Boosting the Energy Density of “Anode‐Free” Lithium Metal Batteries via Electrospun Polymeric Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
While host structures are known to enhance the reversibility and safety of lithium metal deposition, their additional volume and weight often decrease the battery's energy density and specific energy. By combining a lightweight and porous scaffold of electrospun polymer with a thinner separator, this article demonstrates a simultaneous improvement of ...
Lennart Wichmann   +6 more
wiley   +1 more source

Steep‐Switching Memory FET for Noise‐Resistant Reservoir Computing System

open access: yesAdvanced Functional Materials, EarlyView.
We demonstrate the steep‐switching memory FET with CuInP2S6/h‐BN/α‐In2Se3 heterostructure for application in noise‐resistant reservoir computing systems. The proposed device achieves steep switching characteristics (SSPGM = 19 mV/dec and SSERS = 23 mV/dec) through stabilization between CuInP2S6 and h‐BN.
Seongkweon Kang   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy