Results 81 to 90 of about 44,866 (226)

Mechanobiological Dynamics‐Inspired Mechanomodulatory Biomaterials

open access: yesAdvanced Science, EarlyView.
Recent advances in biomaterial‐mediated mechanomodulation of stem cell fate, encompassing 2, 3, and 4D systems and their synergy with artificial intelligence is overviewed. By integrating knowledge from diverse fields, this review ultimately aims to inspire the design of smarter biomaterial systems that can accelerate the clinical translation of ...
Letao Yang   +6 more
wiley   +1 more source

Allosteric Modulation of Pathological Ataxin‐3 Aggregation: A Path to Spinocerebellar Ataxia Type‐3 Therapies

open access: yesAdvanced Science, EarlyView.
This study uncovers a new allosteric site in the Josephin domain of ataxin‐3 targeted by the molecular tweezer CLR01, which modulates protein aggregation, improves synaptic function in neuronal cells, and delays motor dysfunction in animal models.
Alexandra Silva   +28 more
wiley   +1 more source

Strong Proton‐Phonon Coupling Drives Fast Ion Transport in Perovskites

open access: yesAdvanced Science, EarlyView.
Experimental and computational phonon analysis of ABO3‐type proton conductor BaSnO3 shows that substitution on the B‐site with yttrium forms an imaginary phonon mode which is instrumental for the function as proton conductor. This overcompensates the adverse proton trapping effect of the yttrium.
Alexey Rulev   +8 more
wiley   +1 more source

HIDF: Integrating Tree‐Structured scRNA‐seq Heterogeneity for Hierarchical Deconvolution of Spatial Transcriptomics

open access: yesAdvanced Science, EarlyView.
The prevailing neglect of cellular hierarchies in current spatial transcriptomics deconvolution often obscures cellular heterogeneity and impedes the identification of fine‐grained subtypes. To address this issue, HIDF employs a cluster‐tree and dual regularization to systematically model cellular hierarchical structures.
Zhiyi Zou   +5 more
wiley   +1 more source

OPTRACE: Optical Imaging–Guided Transplantation and Tracking of Cells in the Mouse Brain

open access: yesAdvanced Science, EarlyView.
OPTRACE establishes an optical, two‐step platform for intracerebral cell therapy. Transparent glass pipettes enable real‐time, image‐guided delivery, while multiplex genetic labeling with two‐photon and bioluminescence readouts supports longitudinal single‐cell tracking and host–graft dynamics.
Jinghui Wang   +10 more
wiley   +1 more source

Atomic‐Scale Tailoring of Ni‐Rich Cathodes for the Development of Commercial Li‐Ion Batteries: From Laboratory to Market

open access: yesAdvanced Science, EarlyView.
The growing demand in the lithium‐ion battery industry requires the efficient development of commercial batteries that approach theoretical limits within well‐established systems. In this work, we develop a strategy for controlling the voltage profile under fixed cut‐off voltages in commercial cells by utilizing Ni‐rich cathodes. We establish an atomic‐
Joonhyeon Kang   +15 more
wiley   +1 more source

A Sub‐1 Nm Cluster Chains‐enhanced Poly(ethylene oxide) Electrolyte for an All‐solid‐State Lithium Metal Battery with a Long Cycling Lifespan

open access: yesAdvanced Science, EarlyView.
Sub‐1 nm inorganic cluster chain with cation vacancies optimize PEO electrolytes by eliminating Li+ migration barriers and constructing 3D ion transport networks, while in situ c‐AFM reveals dynamic transport mechanisms, enabling high‐performance all‐solid‐state batteries. Abstract Flexible composite polymer electrolytes (CPEs) are promising candidates
Shanshan Song   +8 more
wiley   +1 more source

A Tangentially Sensitive Tactile Sensor Reveals the Stick‐Slip Mechanism and Enhances Robotic Tactile Sensing

open access: yesAdvanced Science, EarlyView.
An ultralight, multilayer anisotropic tactile sensor—an artificial Pacinian corpuscle—exhibits ultrahigh tangential sensitivity (1022 kPa−1) and spatiotemporal sensing. It discriminates static, sliding, and rolling contacts, detects incipient stick–slip via high‑frequency signatures, and enhances robotic touch (100%/98.18% accuracy for active/passive ...
Jinghui Wang   +12 more
wiley   +1 more source

CACLENS: A Multitask Deep Learning System for Enzyme Discovery

open access: yesAdvanced Science, EarlyView.
CACLENS, a multimodal and multi‐task deep learning framework integrating cross‐attention, contrastive learning, and customized gate control, enables reaction type classification, EC number prediction, and reaction feasibility assessment. CACLENS accelerates functional enzyme discovery and identifies efficient Zearalenone (ZEN)‐degrading enzymes.
Xilong Yi   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy