Results 191 to 200 of about 1,526,545 (357)
Transforming Cellulose Into Functional Three‐Dimensional Structures
Cellulose is promising for replacing synthetic polymers due to its excellent mechanical properties and low cost. This review highlights the recent advancements in transforming cellulose into functional 3D structures, including liquid gels and porous materials.
Xia Sun+5 more
wiley +1 more source
Random matrix theory and acoustic resonances in plates with an approximate symmetry [PDF]
Anders Andersen+3 more
openalex +1 more source
Porous silicon nanoparticles (PSiNPs) reprogram macrophage endocytosis of manganese@albumin‐based TLR4 nanoagonists, driving TRIF‐biased TLR4 signaling, eliciting robust proinflammatory responses, and potentiating macrophage‐mediated immunotherapeutic effects against NSCLC.
Xiaomei Zhang+9 more
wiley +1 more source
A potent anionic citric acid‐based 3D‐printed scaffold is developed for the sustained and controlled release of orthobiologics to enhance orthopedic therapeutic efficacy. Comprehensive in vivo studies demonstrated effective bone fusion and high safety at a low dose of BMP‐2 delivered by the system, establishing it as a promising platform for safe ...
Se‐Hwan Lee+12 more
wiley +1 more source
Universality of the Distribution Functions of Random Matrix Theory. II
Craig A. Tracy, Harold Widom
openalex +2 more sources
CD105‐LNPs and PS‐LNPs can deliver α‐lipoic acid to bone marrow mesenchymal stem cells and bone marrow‐derived macrophages, reversing high glucose‐induced oxidative stress while enhancing osteogenesis and M2 polarization. Integrating both nanoparticles into glucose‐responsive hyaluronic acid hydrogel forms DLNPs@HA hydrogel, which accelerates diabetic ...
Yanzhi Zhao+11 more
wiley +1 more source
Random Matrix Theory and Chiral Symmetry in QCD
J. J. M. Verbaarschot, Tilo Wettig
openalex +1 more source
Random matrix theory and higher genus integrability: the quantum chiral Potts model [PDF]
J-Ch Angl egrave s d apos Auriac+2 more
openalex +1 more source
Modulating Oxide‐Based Quantum Materials by Ion Implantation
This review highlights how ion implantation, a well developed chip‐technology, enables targeted modulation of oxide‐based quantum materials. This includes tuning of metal‐insulator transitions, magnetism, and superconductivity through selective doping, defect creation, and induced lattice strain. Abstract Ion implantation has emerged as a powerful tool
Andreas Herklotz+2 more
wiley +1 more source