Results 51 to 60 of about 75,128 (199)
ADDITIVE GROUPS OF ASSOCIATIVE RINGS
An abelian group is said to be semisimple if it is an additive group of at least one semisimple associative ring. It is proved that the description problem for semisimple groups is reduced to the case of reduced groups. As a consequence, it is shown that
E. I. Kompantseva
doaj
Rationality of the zeta function of the subgroups of abelian $p$-groups
Given a finite abelian $p$-group $F$, we prove an efficient recursive formula for $\sigma_a(F)=\sum_{\substack{H\leq F}}|H|^a$ where $H$ ranges over the subgroups of $F$.
Ramaré, Olivier
core +3 more sources
Local equivalence and refinements of Rasmussen's s‐invariant
Abstract Inspired by the notions of local equivalence in monopole and Heegaard Floer homology, we introduce a version of local equivalence that combines odd Khovanov homology with equivariant even Khovanov homology into an algebraic package called a local even–odd (LEO) triple.
Nathan M. Dunfield +2 more
wiley +1 more source
Equivariant Kuznetsov components for cubic fourfolds with a symplectic involution
Abstract We study the equivariant Kuznetsov component KuG(X)$\mathrm{Ku}_G(X)$ of a general cubic fourfold X$X$ with a symplectic involution. We show that KuG(X)$\mathrm{Ku}_G(X)$ is equivalent to the derived category Db(S)$D^b(S)$ of a K3$K3$ surface S$S$, where S$S$ is given as a component of the fixed locus of the induced symplectic action on the ...
Laure Flapan, Sarah Frei, Lisa Marquand
wiley +1 more source
Separating invariants for certain representations of the elementary Abelian p-groups of rank two
For a finite group acting linearly on a vector space, a separating set is a subset of the invariant ring that separates the orbits. In this paper, we determined explicit separating sets in the corresponding rings of invariants for four families of finite
Panpan Jia , Jizhu Nan, Yongsheng Ma
doaj +1 more source
A Model of Three-Dimensional Lattice Gravity
A model is proposed which generates all oriented $3d$ simplicial complexes weighted with an invariant associated with a topological lattice gauge theory.
Kopenhagen Ø Denmark +2 more
core +2 more sources
Witten genera of complete intersections
Abstract We prove vanishing results for Witten genera of string generalized complete intersections in homogeneous Spinc$\text{Spin}^c$‐manifolds and in other Spinc$\text{Spin}^c$‐manifolds with Lie group actions. By applying these results to Fano manifolds with second Betti number equal to one we get new evidence for a conjecture of Stolz.
Michael Wiemeler
wiley +1 more source
On the topological ranks of Banach ∗$^*$‐algebras associated with groups of subexponential growth
Abstract Let G$G$ be a group of subexponential growth and C→qG$\mathcal C\overset{q}{\rightarrow }G$ a Fell bundle. We show that any Banach ∗$^*$‐algebra that sits between the associated ℓ1$\ell ^1$‐algebra ℓ1(G|C)$\ell ^1(G\,\vert \,\mathcal C)$ and its C∗$C^*$‐envelope has the same topological stable rank and real rank as ℓ1(G|C)$\ell ^1(G\,\vert ...
Felipe I. Flores
wiley +1 more source
ABSTRACT Cartan's equivalence method is applied to explicitly construct three‐dimensional invariant coframes for three branches, which are used to characterize scalar second‐order ODEs with a three‐point symmetry Lie algebra. Additionally, we present a method for constructing the point transformation based on the derived invariant coframes.
Ahmad Y. Al‐Dweik +5 more
wiley +1 more source
On the Root-class Residuality of HNN-extensions of Groups
Let K be an arbitrary root class of groups. This means that K contains at least one non-unit group, is closed under taking subgroups and direct products of a finite number of factors and satisfies the Gruenberg condition: if 1 ≤ Z ≤ Y ≤ X is a subnormal ...
E. A. Tumanova
doaj +1 more source

