Results 121 to 130 of about 11,812,623 (407)
Macaque models of human infectious disease. [PDF]
, 2008 Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents-bacteria, viruses, fungi, parasites, prions.Abe, Adams, Ahmed, Ajariyakhajorn, Albrecht, Allen, Apetrei, Apetrei, Arroyo, Bai, Bannantine, Barker, Barnett, Barouch, Baskerville, Baskin, Baze, Bennett, Blanchard, Blaney, Bons, Boonjakuakul, Breitschwerdt, Brooks, Brown, Bruce, Campos, Capone, Capone, Carbone, Carlson, Carlson, CARVALHO, Chan, Chattopadhyay, Chen, Chen, Chenine, Choi, Chomel, Choo, Chopra, Christe, Coalson, Coban, Cohen, Cohen, Contreras, Courgnaud, Custer, Cypess, Daddario-DiCaprio, Daddario-Dicaprio, Dalgard, Daniel, de Swart, Dezzutti, Di Giulio, Dittmer, Doi, Donnelly, Dubois, Dubois, Dutta, Earl, Edghill-Smith, Edghill-Smith, Ekanayake, Engel, Escalante, Espana, Farber, Feichtinger, Fisher-Hoch, Fisher-Hoch, Fitzgeorge, Fogg, Foley, Foucault, Fritz, Frolova, Gajdusek, Gallinella, Gao, Gardner, Gardner, Gardner, Gaynor, Geisbert, Geisbert, Geisbert, Geisbert, Gheit, Gibbs, Giddens, Goldstein, Gonder, Good, Gormus, Gormus, Goverdhan, Graczyk, Graff, Gray, Green, Guirakhoo, Haagmans, Haase, Habis, Hambleton, Hansen, Hawley, Heise, Heraud, Herzog, Hessell, Hicks, Higashi, Hirano, Hirsch, Hooper, Hotez, Hubbert, Hull, Hunsmann, Hutin, Ilyinskii, Inoue, Ivanoff, Jahrling, Ji, Johnson, Johnson, Jones-Engel, Jones-Engel, Kao, Kawai, Kawai, Kennedy, Kenyon, Kestler, Kinsey, Kishimoto, Klingstrom, Klumpp, Kobasa, Kobune, Kodama, Kornegay, Kuiken, Kuiken, Kunz, Kutok, Kwang, Lackner, Lake-Bakaar, Lasm zas, Le Bras, Leong, Leroy, Letvin, Letvin, Letvin, Levine, Li, Li, Lichtenwalner, Lindsley, Line, Ling, Linial, Lockridge, Lodmell, Lowenstine, Lukashevich, Lukashevich, Lusso, Maddison, Mankowski, Mansfield, Mansfield, Marra, Marthas, Marthas, Marx, Mason, Masters, Matz-Rensing, Maul, McArthur-Vaughan, McMichael, McNeely, McShane, Meisenhelder, Mense, Miller, Miyoshi, Moghaddam, Monath, Mon , Mooser, Morris, Morton, Mulder, Murphey-Corb, Murphy, Murphy, Myint, Nagle, NI, North, Novembre, O'Rourke, O'Sullivan, O'Sullivan, Olson, Ostrow, Ostrow, Oswald, Pachner, Pachner, Pachner, Pahar, Palmer, Palmer, Patton, Patton, Paul, Peiris, Percy, Perelygina, Permar, Persson, Peters, Peters, Petschow, Philipp, Philipp, Phipps, Pialoux, Pletnev, Polack, Pung, Puri, Raengsakulrach, Raether, Ratterree, Reed, Reimann, Reindel, Renne, Rhesus Macaque Genome Sequencing and Analysis Cons, Rimmelzwaan, Rimmelzwaan, Rivailler, Rockx, Rodas, Rue, Ruff, Russell, Saadat, Sale, Samuel, Sato, Schou, Schou, Schricker, Schultz, Sequar, Sestak, Shah, Shen, Shevtsova, Shuto, Simoes, Smit-McBride, Smith, Smith, Soike, Solnick, Solnick, Spencer, Stittelaar, Stittelaar, Stittelaar, Stokes, Subekti, Suss, Tanaka, Tanghe, Taylor, Taylor, Tribe, Tulis, Turell, Uberla, van den Hoogen, van Gorder, Van Heuverswyn, Van Rompay, Van Voorhis, Vasconcelos, Vasconcelos, Veazey, Voevodin, Vogel, Walsh, WALSH, Weinmann, Weiss, Wells, Wengelnik, Wenner, Westerman, White, Whitney, Williamson, Williamson, Willy, Wobus, Wolf, Wolfe, Wood, Wright, Wyatt, Xu, Yalcin, Zaucha, Zhou, Zuckerman, Zumpe +330 morecore +1 more sourceTOMM20 as a driver of cancer aggressiveness via oxidative phosphorylation, maintenance of a reduced state, and resistance to apoptosis
Molecular Oncology, EarlyView.TOMM20 increases cancer aggressiveness by maintaining a reduced state with increased NADH and NADPH levels, oxidative phosphorylation (OXPHOS), and apoptosis resistance while reducing reactive oxygen species (ROS) levels. Conversely, CRISPR‐Cas9 knockdown of TOMM20 alters these cancer‐aggressive traits.Ranakul Islam, Megan E. Roche, Zhao Lin, Diana Whitaker‐Menezes, Victor Diaz‐Barros, Eurico Serrano, Maria Paula Martinez Cantarin, Nancy J. Philp, Atrayee Basu Mallick, Ubaldo Martinez‐Outschoorn +9 morewiley +1 more sourceAre the European reference networks for rare diseases ready to embrace machine learning? A mixed-methods study
Orphanet Journal of Rare DiseasesBackground The delay in diagnosis for rare disease (RD) patients is often longer than for patients with common diseases. Machine learning (ML) technologies have the potential to speed up and increase the precision of diagnosis in this population group ...Georgi Iskrov, Ralitsa Raycheva, Kostadin Kostadinov, Sandra Gillner, Carl Rudolf Blankart, Edith Sky Gross, Gulcin Gumus, Elena Mitova, Stefan Stefanov, Georgi Stefanov, Rumen Stefanov +10 moredoaj +1 more sourceLongitudinal evolution of motor and non-motor symptoms in early-stage multiple system atrophy: a 2-year prospective cohort study
BMC Medicine, 2022 Background The progression of motor and non-motor symptoms (NMS) and the sensitivity of each item of the Unified Multiple System Atrophy Rating Scale (UMSARS) to change remain unclear in Chinese patients with early-stage multiple system atrophy (MSA). We Lingyu Zhang, Yanbing Hou, Bei Cao, Qianqian Wei, Ruwei Ou, Kuncheng Liu, Junyu Lin, Tianmi Yang, Yi Xiao, Yongping Chen, Wei Song, Bi Zhao, Huifang Shang +12 moredoaj +1 more sourceOxidative Stress, a Crossroad between Rare Diseases and Neurodegeneration
Antioxidants, 2020 Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as ...C. Espinós, M. Galindo, M. Garcia-Gimeno, J. S. Ibáñez-Cabellos, D. Martínez-Rubio, J. Millán, R. Rodrigo, P. Sanz, M. Seco-Cervera, T. Sevilla, Andrea Tapia, F. Pallardó +11 moresemanticscholar +1 more sourceThe atypical KRASQ22K mutation directs TGF‐β response towards partial epithelial‐to‐mesenchymal transition in patient‐derived colorectal cancer tumoroids
Molecular Oncology, EarlyView.TGF‐β has a complex role in cancer, exhibiting both tumor‐suppressive and tumor‐promoting properties. Using a series of differentiated tumoroids, derived from different stages and mutational background of colorectal cancer patients, we replicate this duality of TGF‐β in vitro. Notably, the atypical but highly aggressive KRASQ22K mutation rendered early‐Theresia Mair, Philip König, Milena Mijović, Jessica Kalla, Anil Baskan, Loan Tran, Kristina Draganić, Pedro Morata Saldaña, Carlos Uziel Pérez Malla, Janette Pfneissl, Andreas Tiefenbacher, Julijan Kabiljo, Velina S. Atanasova, Lisa Wozelka‐Oltjan, Leonhard Müllauer, Michael Bergmann, Raheleh Sheibani‐Tezerji, Gerda Egger +17 morewiley +1 more source