Results 221 to 230 of about 252,763 (271)
Semi-decentralized federated learning with client pairing for efficient mutual knowledge transfer. [PDF]
Yang D, Lee J, Choi SG.
europepmc +1 more source
Moment convergence in mixed-rates Sparse-Bridge estimation
H. Masuda, Yusuke Shimizu
openalex +1 more source
Machine learning unlocks robust convergence for chemical process simulations
Jakobs D +2 more
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Verification of Reduced Convergence Rates
Computing, 2004zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Hu, Hsin-Yun, Li, Zi-Cai
openaire +2 more sources
1990
In this chapter, the rate of convergence of the algorithm to its ODE and/or to the desired value θ* is described in more detail. The analysis is again asymptotic.
Albert Benveniste +2 more
openaire +1 more source
In this chapter, the rate of convergence of the algorithm to its ODE and/or to the desired value θ* is described in more detail. The analysis is again asymptotic.
Albert Benveniste +2 more
openaire +1 more source
Convergence Rates of SNP Density Estimators
Econometrica, 1996The seminonparametric (SNP) density estimator, proposed by \textit{A. R. Gallant} and \textit{D. W. Nychka} [ibid. 55, 363-390 (1987; Zbl 0631.62110)], has been used for structural, reduced form, and efficient method of moments estimation in economics, finance, and the health sciences.
Fenton, Victor M, Gallant, A Ronald
openaire +2 more sources
1978
In Section 7.1, rate of convergence is defined, and our approach to the rate problem discussed. The rates are developed (in Section 7.3) for three separate cases, two forms of the basic KW procedure and the basic RM procedure. These algorithms are discussed in Section 7.1 and are put into a form which will be useful in the subsequent development.
Harold J. Kushner, Dean S. Clark
openaire +1 more source
In Section 7.1, rate of convergence is defined, and our approach to the rate problem discussed. The rates are developed (in Section 7.3) for three separate cases, two forms of the basic KW procedure and the basic RM procedure. These algorithms are discussed in Section 7.1 and are put into a form which will be useful in the subsequent development.
Harold J. Kushner, Dean S. Clark
openaire +1 more source
1997
The traditional definition of rate of convergence refers to the asymptotic properties of normalized errors about the limit point \( \bar \theta \). If e n = e for the Robbins—Monro algorithm, it is concerned with the asymptotic properties of \( U_n^ \in = \left( {\theta _n^ \in - \bar \theta } \right)/\sqrt \in \) for large n and small ∈.
Harold J. Kushner, G. George Yin
openaire +1 more source
The traditional definition of rate of convergence refers to the asymptotic properties of normalized errors about the limit point \( \bar \theta \). If e n = e for the Robbins—Monro algorithm, it is concerned with the asymptotic properties of \( U_n^ \in = \left( {\theta _n^ \in - \bar \theta } \right)/\sqrt \in \) for large n and small ∈.
Harold J. Kushner, G. George Yin
openaire +1 more source
2015
In this chapter, we study the local rate of convergence of r n (x) to r(x). We obtain full information on the first asymptotic term of r n (x) − r(x), and are rewarded with (i) a central limit theorem for r n (x) − r(x), and (ii) a way of helping the user decide how to choose the weights v ni of the estimate.
Gérard Biau, Luc Devroye
openaire +1 more source
In this chapter, we study the local rate of convergence of r n (x) to r(x). We obtain full information on the first asymptotic term of r n (x) − r(x), and are rewarded with (i) a central limit theorem for r n (x) − r(x), and (ii) a way of helping the user decide how to choose the weights v ni of the estimate.
Gérard Biau, Luc Devroye
openaire +1 more source
1996
This chapter gives some results on rates of convergence of M-estimators, including maximum likelihood estimators and least-squares estimators. We first state an abstract result, which is a generalization of the theorem on rates of convergence in Chapter 3.2, and next discuss some methods to establish the maximal inequalities needed for the application ...
Aad W. van der Vaart, Jon A. Wellner
openaire +1 more source
This chapter gives some results on rates of convergence of M-estimators, including maximum likelihood estimators and least-squares estimators. We first state an abstract result, which is a generalization of the theorem on rates of convergence in Chapter 3.2, and next discuss some methods to establish the maximal inequalities needed for the application ...
Aad W. van der Vaart, Jon A. Wellner
openaire +1 more source

