Results 171 to 180 of about 73,664 (313)

Dual‐Atom Dopants Activated Ruthenium Single‐Atom Alloy Boosting Hydrogen Evolution Electrocatalysis in Proton Exchange Membrane Water Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
Ni1‐Bi1 dual‐atom dopants are achieved for activating Ru lattices without blocking noble atoms. This model exhibits an ultralow overpotential of 11.4 mV and superb stability at 10 mA cm−2 toward hydrogen evolution reaction, enabling a proton exchange membrane water electrolyzer that needs only 2.233 V to reach 3.0 A cm−2 and operates stably at 1.0 A cm−
Shuiping Luo   +17 more
wiley   +1 more source

Reactive ion etching for fabrication of biofunctional titanium nanostructures. [PDF]

open access: yesSci Rep, 2019
Ganjian M   +5 more
europepmc   +1 more source

Heteroatom‐Engineering Promoted Co9S8 Bi‐functional Electrocatalyst for Hydrazine‐Assisted Hydrogen Production at Industrial Current Density

open access: yesAdvanced Functional Materials, EarlyView.
Fe and P co‐doped Co9S8 nanocorals (Fe, P‐Co9S8) are successfully synthesized by a heteroatom engineering strategy, which exhibit outstanding bifunctional electrocatalytic performance for both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR).
Yuying Meng   +8 more
wiley   +1 more source

Scalable Thermal Engineering via Femtosecond Laser‐Direct‐Written Phononic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that femtosecond laser‐induced periodic surface structures (fs‐LIPSS) can function as phononic metasurfaces, reducing thermal conductivity below the plain thin‐film limit. Phonon Monte Carlo analysis reveals that the periodic structures restrict phonon mean free paths.
Hiroki Hamma   +4 more
wiley   +1 more source

Near‐Infrared Light‐Programmable Negative Differential Transconductance in Organic Electrochemical Transistors for Reconfigurable Logic

open access: yesAdvanced Functional Materials, EarlyView.
Organic electrochemical transistors based on a Near‐Infrared (NIR)‐responsive polymer p(C4DPP‐T) and iodide electrolyte exhibit optically programmable negative differential transconductance. NIR illumination triggers an iodine‐mediated redox process, enabling a transition from binary to ternary conductance states within a single‐layer device.
Debdatta Panigrahi   +7 more
wiley   +1 more source

Reactive Ion Etching in the Gaseous Electronics Conference Rf Reference Cell

open access: bronze, 1995
M.L. Brake   +4 more
openalex   +1 more source

Home - About - Disclaimer - Privacy