Results 171 to 180 of about 116,663 (322)

Statistical Distributions of Morphologically Classified Defects in Metal Additive Manufacturing with Implications for Fatigue Life Prediction

open access: yesAdvanced Engineering Materials, EarlyView.
Morphological features of three defect types in metal additive manufacturing (AM)—lack of fusion, keyhole, and gas‐entrapped pores—are statistically characterized using best‐fit distributions evaluated via coefficient‐of‐determination, Kolmogorov–Smirnov test, and quantile–quantile plots.
Ahmad Serjouei, Golnaz Shahtahmassebi
wiley   +1 more source

Large‐Scale Interlaboratory Study Along the Entire Process Chain of Laser Powder Bed Fusion: Bridging Variability, Standards, and Optimization across Metals and Polymers

open access: yesAdvanced Engineering Materials, EarlyView.
What happens when 32 labs join forces to study nanoparticle‐modified powders? A data‐driven journey through laser powder bed fusion—now openly accessible for the entire additive manufacturing community—is studied. Laser powder bed fusion is a cornerstone technology for additive manufacturing (AM) of metals and polymers, yet challenges in achieving ...
Ihsan Murat Kuşoğlu   +73 more
wiley   +1 more source

Action of the Euclidean versus projective group on an agent's internal space in curiosity driven exploration. [PDF]

open access: yesBiol Cybern
Sergeant-Perthuis G   +5 more
europepmc   +1 more source

Laser Additive Manufacturing of Oxide‐Dispersion‐Strengthened Steels: A Simulation‐Based Comparison Between Powder Bed Fusion and Direct Energy Deposition

open access: yesAdvanced Engineering Materials, EarlyView.
Controlling the size and distribution of dispersoids is essential for optimizing the performance of oxide‐dispersion‐strengthened steels. This study focuses on nanoparticle dispersion and agglomeration during laser additive manufacturing of Fe20Cr alloy reinforced with ZrO 2 nanoparticles. Utilizing multiphysics phase‐field simulations and nanoparticle
Somnath Bharech   +6 more
wiley   +1 more source

Shape Memory Polymer‐Based Hook‐and‐Loop Fastener for Robust Bonding and on‐Demand Easy Separation

open access: yesAdvanced Engineering Materials, EarlyView.
A 3D shape memory polymer‐based hook‐and‐loop fastener, fabricated using projection microstereolithography and molding, offers tunable bonding strength through temperature control. When heated from 25 to 70 °C, the fastener softens and deforms easily, reducing bonding strength by 20‐fold for on‐demand easy separation.
Chen Yang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy