Results 291 to 300 of about 118,453 (329)
Some of the next articles are maybe not open access.

Zero-energy Fields on Real Projective Space

Geometriae Dedicata, 1997
Sur une variété riemannienne on définit de façon naturelle l'intégrale (ou l'énergie) d'un champ de formes symétriques \(\theta\) de degrée \((k+1)\) sur une géodésique fermée. Si \(\theta\) est de la forme sym \(\Delta\varphi\), c'est-à-dire est la dérivée covariante symétrisée d'une forme symétrique de degré \(k\) cette énergie est nulle. Dans le cas
Bailey, Toby N.   +1 more
openaire   +2 more sources

Convexity in Real Projective Space

2004
In this introductory chapter we look at ordinary convexity in ℝ n by embedding ℝ n into real projective space ℝℙ n . In this way convexity becomes invariant under projective mappings. In Section 1.1 we discuss very briefly conditions that characterize convexity in ℝ n . In Section 1.2 we introduce fundamental geometric concepts in real projective space
Mats Andersson   +2 more
openaire   +1 more source

Real hypersurfaces in quaternionic projective space

Annali di Matematica Pura ed Applicata, 1986
The paper is a systematic study of real hypersurfaces of quaternionic projective spaces via the focal set theory. By using the induced structures on a real hypersurface the authors obtain three classes of real hypersurfaces. Then by means of one of these classes they find an example of a proper quaternion CR-submanifold in the sense of \textit{M ...
Martínez, A., Pérez, J. D.
openaire   +1 more source

REAL PROJECTIVE MANIFOLDS DEVELOPING INTO AN AFFINE SPACE

International Journal of Mathematics, 1993
Suppose that an n-dimensional closed real projective manifold M, n ≥ 2, develops into an affine space RPn − RPn − 1 for an (n − 1)-dimensional subspace RPn − 1 of the projective space RPn. Then either M is convex or affine or M admits a flat foliation [Formula: see text] with a transverse invariant Hilbert metric.
Chae, YK YOUNKI CHAE   +2 more
openaire   +2 more sources

On canonical embeddings of complex projective spaces in real projective spaces

Journal of Mathematical Sciences, 2007
From the author's introduction: In the present paper, we study the canonical embedding of \(\mathbb{C}P^n\) in the \(U(n+1)\)-space \(\mathbb{R}P^{n^2+2n}\). The fact that this embedding is natural allows one to hope that complex projective geometry can be invariantly characterized in terms of real projective geometry.
openaire   +1 more source

Embedding Real Projective Spaces

The Annals of Mathematics, 1968
Mahowald, M., Milgram, R. J.
openaire   +2 more sources

The Adams–Mahowald conjecture on real projective spaces

Mathematical Proceedings of the Cambridge Philosophical Society, 1979
Let A denote the mod 2 Steenrod algebra. Let ℤ2[x, x−l] be the (graded) ring of finite Laurent series over ℤ2 in the variable x with dim (x) = 1. ℤ2[x, x−1] is a module over the Steenrod algebra A bywhere are binomial coefficients modulo 2 and m > 0 is large compared with |k| and i. Let M be the A-submodule of ℤ2[x, x−1 ] generated by all powers xi
openaire   +1 more source

An overview of real‐world data sources for oncology and considerations for research

Ca-A Cancer Journal for Clinicians, 2022
Lynne Penberthy   +2 more
exaly  

ON STUNTED REAL PROJECTIVE SPACES

The Quarterly Journal of Mathematics, 1974
James, I. M., Sutherland, W. A.
openaire   +2 more sources

Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions

Ca-A Cancer Journal for Clinicians, 2021
Michael L Cheng   +2 more
exaly  

Home - About - Disclaimer - Privacy