Results 131 to 140 of about 90,810 (274)

Atomic Defects in Layered Transition Metal Dichalcogenides for Sustainable Energy Storage and the Intelligent Trends in Data Analytics

open access: yesAdvanced Science, EarlyView.
This review comprehensively summarizes the atomic defects in TMDs for their applications in sustainable energy storage devices, along with the latest progress in ML methodologies for high‐throughput TEM data analysis, offering insights on how ML‐empowered microscopy facilitates bridging structure–property correlation and inspires knowledge for precise ...
Zheng Luo   +6 more
wiley   +1 more source

Soft, Flexible, and Stretchable Platforms for Tissue‐Interfaced Bioelectronics

open access: yesAdvanced Science, EarlyView.
Bio‐integrated electronics provide mechanically compliant and stable interfaces with soft biological tissues. Representative applications include neural interfaces, wet‐organadhesive electronics, and skin‐interfaced devices. E represents Young´s modulus and ε represents strain.
Kento Yamagishi   +3 more
wiley   +1 more source

Rechargeable Optima laryngoscopes

open access: yesBritish Journal of Anaesthesia, 1995
P D, Alexander, M, Meurer-Laban
openaire   +2 more sources

High‐Conductivity Electrolytes Screened Using Fragment‐ and Composition‐Aware Deep Learning

open access: yesAdvanced Science, EarlyView.
We present a new deep learning framework that hierarchically links molecular and functional unit attributions to predict electrolyte conductivity. By integrating molecular composition, ratios, and physicochemical descriptors, it achieves accurate, interpretable predictions and large‐scale virtual screening, offering chemically meaningful insights for ...
Xiangwen Wang   +6 more
wiley   +1 more source

Lattice‐Interface Dual Engineering Unlocking Quasi‐Zero‐Strain and High‐Rate Zinc‐Ion Storage in Polyanionic Cathode

open access: yesAdvanced Science, EarlyView.
Li‐doped Na3V2O2(PO4)2F nanoparticles coated with N‐doped carbon are designed to improve their electronic conductivity. The co‐modification of Li doping and carbon coating improves structural integrity, increases electronic conductivity, lowers the Zn2+ migration barrier, and elevates the average Zn2+ diffusion coefficient, thereby leading to superior ...
Qiaofeng Huang   +8 more
wiley   +1 more source

Non‐Equilibrium Synthesis Methods to Create Metastable and High‐Entropy Nanomaterials

open access: yesAdvanced Science, EarlyView.
ABSTRACT Stabilizing multiple elements within a single phase enables the creation of advanced materials with exceptional properties arising from their complex composition. However, under equilibrium conditions, the Hume–Rothery rules impose strict limitations on solid‐state miscibility, restricting combinations of elements with mismatched crystal ...
Shuo Liu   +3 more
wiley   +1 more source

Sulfonated Cellulose Acetate Nanofibers Induced Zincophilic‐Hydrophobic Interface to Regulate Ion Transport for Long‐Lifespan Zinc‐Iodine Batteries

open access: yesAdvanced Science, EarlyView.
Sulfonated cellulose acetate (SCA) nanofiber membrane with zincophilic‐hydrophobic property is constructed on the surface of the Zn anode by the electrospinning technique to tune the 3D deposition behavior of Zn2+ by chemisorption and micro‐sized physical structure. The negatively‐charged groups of SCA nanofiber membrane form an electrostatic repulsion
Wendan Zhang   +13 more
wiley   +1 more source

Mechanically rechargeable zinc-air batteries for two- and three-wheeler electric vehicles in emerging markets

open access: yesCommunications Materials
Mechanically rechargeable zinc-air batteries are considered promising for powering electric vehicles due to their high theoretical energy density, but a few practical hurdles impede their implementation.
Akhil Kongara   +3 more
doaj   +1 more source

Breaking the Thick Electrode Paradox With an in situ VS2@V2CTx MXene Heterostructure for High‐Areal‐Capacity Batteries

open access: yesAdvanced Science, EarlyView.
This work pioneers an in situ gas‐phase conversion strategy to construct VS2@V2Tx heterostructures within a MWCNT network. The integrated architecture establishes interpenetrating electron/ion highways, enabling an ultra‐thick electrode (300 µm) to achieve a high areal capacity of 13.6 mAh cm−2 with exceptional cycling stability, demonstrating great ...
Lirong Wang   +9 more
wiley   +1 more source

Enhancing Interfacial Dioxygen Bridging Dynamics of Waste‐Derived Cathode Catalysts for Augmented High‐Rate Performance in Li‐O2 Batteries

open access: yesAdvanced Science, EarlyView.
This study fabricates Fine Slag/Ti4O7@TiC hybrids with interfacial dioxygen bridge coupling to optimize oxygen redox dynamics in lithium‐oxygen batteries (LOBs). Lattice distortion from oxygen vacancies and inherent charge repulsion of Ti‐O‐C interfacial coupling reconstruct and refine the surface coordination environment.
Jixiong Zhang   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy