Results 81 to 90 of about 639,224 (342)

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Gain-Reconfigurable Hybrid Metal-Graphene Printed Yagi Antenna for Energy Harvesting Applications [PDF]

open access: yes, 2019
This paper presents a hybrid metal-graphene printed Yagi antenna with reconfigurable gain that operates in the 5.5-GHz band. The balun and the driven elements are made of copper, while the directors are made of graphene.
Alex-Amor, Antonio   +6 more
core  

Millimeter Wave Communications with Reconfigurable Antennas

open access: yes, 2018
The highly sparse nature of propagation channels and the restricted use of radio frequency (RF) chains at transceivers limit the performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing reconfigurable antennas to
He, Biao, Jafarkhani, Hamid
core   +1 more source

Experimental Demonstration of >230{\deg} Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces [PDF]

open access: yes, 2017
Metasurfaces offer significant potential to control far-field light propagation through the engineering of amplitude, polarization, and phase at an interface. We report here phase modulation of an electronically reconfigurable metasurface and demonstrate
Atwater, Harry A.   +7 more
core   +4 more sources

Integrative Approaches for DNA Sequence‐Controlled Functional Materials

open access: yesAdvanced Functional Materials, EarlyView.
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo   +4 more
wiley   +1 more source

Widely tunable multiband reconfigurable patch antenna for wireless applications [PDF]

open access: yes, 2010
The official published version can be obtained from the link below - Copyright @ EuCAP 2010A design of a low profile reconfigurable microstrip patch antenna is presented. The antenna consists of four suppatches connected to one feed line, each sub-patch
AbuTarboush, HF   +4 more
core  

DNA‐Templated 2D Heterostructures as Phototriggered Dynamic Nanohybrids: From Releasing Molecular Loads to Controlling Enzyme Biocatalytic Function

open access: yesAdvanced Functional Materials, EarlyView.
DNA strands are employed both as dynamic linkers and nanoscale templates for the integration of Ag2S nanoparticles on MoS2, which in turn imparted photothermal responsiveness; this feature permits the selective cargo (fluorophore, quantum dots or an enzyme) release from the MoS2 surface in response to local heat induced by light irradiation.
Kai Chen   +3 more
wiley   +1 more source

Photo‐Switching Thermal and Lithium‐Ion Conductivity in Azobenzene Polymers

open access: yesAdvanced Functional Materials, EarlyView.
Light‐responsive azobenzene polymers control thermal and ionic transport simultaneously through structural transitions. UV illumination disrupts π–π stacking, converting crystalline trans states to amorphous cis configurations. Thermal conductivity drops from 0.45 to 0.15 W·m−1·K−1 while Li+ diffusivity increases 100 fold. This dual transport switching
Jaeuk Sung   +7 more
wiley   +1 more source

Reconfigurable Antennas in mmWave MIMO Systems

open access: yes, 2017
The key obstacle to achieving the full potential of the millimeter wave (mmWave) band has been the poor propagation characteristics of wireless signals in this band.
Almasi, Mojtaba Ahmadi   +4 more
core  

Smarter Sensors Through Machine Learning: Historical Insights and Emerging Trends across Sensor Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights how machine learning (ML) algorithms are employed to enhance sensor performance, focusing on gas and physical sensors such as haptic and strain devices. By addressing current bottlenecks and enabling simultaneous improvement of multiple metrics, these approaches pave the way toward next‐generation, real‐world sensor applications.
Kichul Lee   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy