Block Copolymers: Emerging Building Blocks for Additive Manufacturing
This review addresses how block copolymer (BCP) physics and rheology have led to the widespread use of BCPs in advanced additive manufacturing techniques, with particular emphasis on the untapped potential of these nanostructured materials toward achieving multi‐scale architected materials with unique, programmable material properties.
Alice S. Fergerson +3 more
wiley +1 more source
Wpływ właściwości fizykochemicznych stałych pozostałości z termicznego przekształcania osadów ściekowych na możliwość ich wykorzystania w ceramice czerwonej / The Influence of Incinerated Sewage Sludge Ashes Physical and Chemical Properties in Posibility of Usage in Red Ceramic [PDF]
Agata Stempkowska +2 more
openalex +1 more source
Influence of Paper Industry Effluent Sludge in Ceramic Formulation for Red Wall Tiles (BIII Group)
Lilian Beatriz Chagas +2 more
openalex +1 more source
Certain Caddo Sites in the Ouachita Mountains of Southwestern Arkansas [PDF]
In the last few years, we have had the opportunity to study a number of prehistoric Caddo Indian sites in the Ouachita Mountains of southwestern Arkansas through conducting archeological surveys of more than 2700 acres at three lakes constructed and ...
Nelson, Bo, Perttula, Timothy K.
core +1 more source
Fluoride‐Free Adhesives for Low Surface Energy Fluorinated Substrates
A universal, fluoride‐free adhesive achieves a record 4.91 MPa bond strength on PTFE by leveraging amine/amide dipole–dipole interactions, without fluorinated components. This sustainable strategy overcomes the environmental and performance limits of PFAS‐based adhesives, enabling robust, eco‐conscious bonding across diverse materials.
Siqi Zheng +7 more
wiley +1 more source
Switchable Supramolecular Adhesive by Tuning Interfacial Bonding and Modulus
The supramolecular adhesive (HyDiP) shows reversible adhesion and recyclability. In the dehydrated state, it is dense, stiff (E ≈445 MPa), transparent, and provides strong bonding with adhesion strengths up to 4.65 MPa. In the hydrated state, it becomes porous, soft (E ≈0.11 MPa), and detaches easily, enabling sustainable high‐strength applications ...
Rumin Fu +10 more
wiley +1 more source
Pullulan, a biomass‐derived polysaccharide, is transformed into transparent optical fibers using a solvent‐free borax hydrogel‐spinning method. The fibers outperform PMMA with ≈200 MPa tensile strength and 200 °C stability, while uniquely guiding visible‐to‐NIR light and enabling additive‐free humidity sensing.
Yuya Fukata +4 more
wiley +1 more source
Permanent magnets derive their extraordinary strength from deep, universal electronic‐structure principles that control magnetization, anisotropy, and intrinsic performance. This work uncovers those governing rules, examines modern modeling and AI‐driven discovery methods, identifies critical bottlenecks, and reveals electronic fingerprints shared ...
Prashant Singh
wiley +1 more source
High Entropy Wide‐Bandgap Borates with Broadband Luminescence and Large Nonlinear Optical properties
High‐entropy rare‐earth borates exhibit excellent nonlinear optical and broadband luminescence properties arising from multi‐component doping, chemical disorder, increased configurational entropy, and increased lattice and electronic anharmonicity. This formulation enabled us to obtain a large, environmentally stable single crystal with 3X higher laser‐
Saugata Sarker +14 more
wiley +1 more source
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff +9 more
wiley +1 more source

