Results 261 to 270 of about 10,639,897 (382)

Engineered Interface and Spatial Arrangement of Inorganic Components for Dendrite‐Free Li Anodes in Carbonate‐Based Electrolyte

open access: yesAdvanced Functional Materials, EarlyView.
A solid‐state ion exchange strategy constructs dentrimental Li2CO3 into a high‐modulus, high‐surface‐energy interface to enable dendrite‐free deposition of Li metal anode in the harsh carbonate‐based electrolyte. Abstract The practical application of lithium metal batteries (LMBs) in carbonate‐based electrolytes is hindered by uncontrolled lithium (Li)
Qiannan Zhao   +5 more
wiley   +1 more source

Urban-Rural Disparity in Cardiac Implantable Electronic Device Use: A 10-Year Statewide Cohort. [PDF]

open access: yesGlob Heart
Cho KK   +7 more
europepmc   +1 more source

Harmonizing the Pyrene and Ether Groups in Covalent Triazine Polymers for Highly Effective H2O2 Photosynthesis via One‐Step Two‐Electron Oxygen Reduction

open access: yesAdvanced Functional Materials, EarlyView.
The pyrene and ether groups are incorporated into the covalent triazine polymer (CTP) structure. The synergistic effect of the two functional groups endows CTP with better electron transfer, light absorption, and oxygen activation properties. An impressive apparent quantum yield (13.2% @420 nm) and a remarkable solar‐to‐chemical conversion efficiency ...
Chong Wang   +10 more
wiley   +1 more source

A Scalable, Durable, Fire‐Safe All‐Day Passive Radiative Cooling Coating for Sustainable Buildings

open access: yesAdvanced Functional Materials, EarlyView.
This study reports a scalable, durable coating that combines a fire‑retardant copolymer adhesive, hollow glass microspheres, and boron oxide to achieve passive radiative cooling with over 94% solar reflectance and >95% mid‑infrared emissivity. The coating maintains performance after UV and rain exposure and exhibits UL‑94 V‑0 fire resistance, enabling ...
Zhewen Ma   +8 more
wiley   +1 more source

An In Situ Study of the Topochemical Transformation of Hybrid Layered Hydroxides Into Metallic Nanocomposites

open access: yesAdvanced Functional Materials, EarlyView.
Herein, the topochemical transformation of cobalt‐based layered hydroxides into nanocomposites is investigated using advanced real‐time characterization techniques combined with thermogravimetric analysis. The study reveals how interlayer carboxylic acids direct the transformation pathway, highlighting the role of carbon content and anion length. These
Camilo Jaramillo‐Hernández   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy