Results 201 to 210 of about 45,110,513 (323)

Ladder‐Type Benzene‐Perylene Dyes with Efficient Laser Properties in the Near‐IR by Detracting/Activating Low/High Frequency Vibronic Modes

open access: yesAdvanced Functional Materials, EarlyView.
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández   +12 more
wiley   +1 more source

904 Left ventricular regional dysfunction in severe aortic valve stenosis: a Doppler tissue imaging study [PDF]

open access: bronze, 2003
V DIBELLO   +8 more
openalex   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Dynamic Control of Synaptic Plasticity by Competing Ferroelectric and Trap‐Assisted Switching in IGZO Transistors with Al2O3/HfO2 Dielectrics

open access: yesAdvanced Functional Materials, EarlyView.
A frequency‐tunable ferroelectric synaptic transistor based on a buried‐gate InGaZnO channel and Al2O3/HfO2 dielectric stack exhibits linear and reversible weight updates using single‐polarity pulses. By switching between ferroelectric and trap‐assisted modes depending on input frequency, the device simplifies neuromorphic circuit design and achieves ...
Ojun Kwon   +8 more
wiley   +1 more source

Functional Materials for Environmental Energy Harvesting in Smart Agriculture via Triboelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy