Results 71 to 80 of about 1,087,957 (214)
Abelian Livšic theorems for Anosov flows
Abstract We give two short proofs of the abelian Livšic theorem of Gogolev and Rodriguez Hertz. We show that these proofs may be extended to give new abelian Livšic theorems for positive density sets of null‐homologous orbits and for amenable covers.
Richard Sharp
wiley +1 more source
On contact 3‐manifolds that admit a nonfree toric action
Abstract We classify all contact structures on 3‐manifolds that admit a nonfree toric action, up to contactomorphism, and present them through explicit topological descriptions. Our classification is based on Lerman's classification of toric contact 3‐manifolds up to equivariant contactomorphism [Lerman, J. Symplectic Geom. 1 (2003), 785–828].
Aleksandra Marinković, Laura Starkston
wiley +1 more source
On Fico's Lemmata and the homotopy type of certain gyrations
Abstract We undertake to determine the homotopy type of gyrations of sphere products and of connected sums, thereby generalising results known in earlier literature as ‘Fico's Lemmata’ which underpin gyrations in their original formulation from geometric topology.
Sebastian Chenery
wiley +1 more source
Positive paths in diffeomorphism groups of manifolds with a contact distribution
Abstract Given a cooriented contact manifold (M,ξ)$(M,\xi)$, it is possible to define a notion of positivity on the group Diff(M)$\mathrm{Diff}(M)$ of diffeomorphisms of M$M$, by looking at paths of diffeomorphisms that are positively transverse to the contact distribution ξ$\xi$.
Jakob Hedicke
wiley +1 more source
Modeling (∞,1)$(\infty,1)$‐categories with Segal spaces
Abstract In this paper, we construct a model structure for (∞,1)$(\infty,1)$‐categories on the category of simplicial spaces, whose fibrant objects are the Segal spaces. In particular, we show that it is Quillen equivalent to the models of (∞,1)$(\infty,1)$‐categories given by complete Segal spaces and Segal categories.
Lyne Moser, Joost Nuiten
wiley +1 more source
Equivariant v1,0⃗$v_{1,\vec{0}}$‐self maps
Abstract Let G$G$ be a cyclic p$p$‐group or generalized quaternion group, X∈π0SG$X\in \pi _0 S_G$ be a virtual G$G$‐set, and V$V$ be a fixed point free complex G$G$‐representation. Under conditions depending on the sizes of G$G$, X$X$, and V$V$, we construct a self map v:ΣVC(X)(p)→C(X)(p)$v\colon \Sigma ^V C(X)_{(p)}\rightarrow C(X)_{(p)}$ on the ...
William Balderrama +2 more
wiley +1 more source
Coxeter's enumeration of Coxeter groups
Abstract In a short paper that appeared in the Journal of the London Mathematical Society in 1934, H. S. M. Coxeter completed the classification of finite Coxeter groups. In this survey, we describe what Coxeter did in this paper and examine an assortment of topics that illustrate the broad and enduring influence of Coxeter's paper on developments in ...
Bernhard Mühlherr, Richard M. Weiss
wiley +1 more source
Fundamental groups, geometry, and some papers of Scott
Abstract Throughout the history of 3‐manifolds, the fundamental group has played a central role. There is a list of reasons for that, and exactly what that role is has evolved over time, but it has always been a player. The papers under consideration here all written by G.
D. D. Long
wiley +1 more source
C.T.C. Wall's 1964 articles on 4‐manifolds
Abstract I survey C. T. C. Wall's influential papers, ‘Diffeomorphisms of 4‐manifolds’ and ‘On simply‐connected 4‐manifolds’, published in 1964 on pp. 131–149 of volume 39 of the Journal of the London Mathematical Society.
Mark Powell
wiley +1 more source
Solving implicit inverse problems with homotopy-based regularization path
Implicit inverse problems, in which noisy observations of a physical quantity are used to infer a nonlinear functional applied to an associated function, are inherently ill posed and often exhibit non uniqueness of solutions. Such problems arise in a range of domains, including the identification of systems governed by Ordinary and Partial Differential
Parodi, Davide +3 more
openaire +2 more sources

