Results 241 to 250 of about 493,705 (320)

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Algebraic methods and computational strategies for pseudoinverse-based MR image reconstruction (Pinv-Recon). [PDF]

open access: yesSci Rep
Yeung K   +11 more
europepmc   +1 more source

Robust Feedback Optimization with Model Uncertainty: A Regularization Approach [PDF]

open access: green
W.L. Chan   +5 more
openalex   +1 more source

A Solution for Exosome‐Based Analysis: Surface‐Enhanced Raman Spectroscopy and Artificial Intelligence

open access: yesAdvanced Intelligent Discovery, EarlyView.
Exosomes are emerging as powerful biomarkers for disease diagnosis and monitoring. This review highlights the integration of surface‐enhanced Raman spectroscopy with artificial intelligence to enhance molecular fingerprinting of exosomes. Machine learning and deep learning techniques improve spectral interpretation, enabling accurate classification of ...
Munevver Akdeniz   +2 more
wiley   +1 more source

A Machine Learning Perspective on the Brønsted–Evans–Polanyi Relation in Water‐Gas Shift Catalysis on MXenes

open access: yesAdvanced Intelligent Discovery, EarlyView.
Machine learning predicts activation energies for key steps in the water‐gas shift reaction on 92 MXenes. Random Forest is identified as the most accurate model. Reaction energy and reactant LogP emerge as key descriptors. The approach provides a predictive framework for catalyst design, grounded in density functional theory data and validated through ...
Kais Iben Nassar   +3 more
wiley   +1 more source

Application of Neural Networks for Advanced Ir Spectroscopy Characterization of Ceria Catalysts Surfaces

open access: yesAdvanced Intelligent Discovery, EarlyView.
A novel convolutional neural network architecture enables rapid, unsupervised analysis of IR spectroscopic data from DRIFTS and IRRAS. By combining synthetic data generation with parallel convolutional layers and advanced regularization, the model accurately resolves spectral features of adsorbed CO, offering real‐time insights into ceria surface ...
Mehrdad Jalali   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy